logo

Pandas DataFrame.loc[] Metode

Pandas DataFrame er en todimensjonal størrelse-muterbar, potensielt heterogen tabelldatastruktur med merkede akser (rader og kolonner). Aritmetiske operasjoner justeres på både rad- og kolonneetiketter. Det kan tenkes på som en dikt-lignende beholder for serieobjekter. Dette er den primære datastrukturen til Pandaer .

Pandas DataFrame loc[] Syntaks

Pandaer DataFrame.loc attributt gir tilgang til en gruppe rader og kolonner etter etikett(er) eller en boolsk matrise i den gitte Pandas DataFrame .



Syntaks: DataFrame.loc

Parameter : Ingen

Returnerer: Skalar, Serier, DataFrame



Pandas DataFrame loc Property

Nedenfor er noen eksempler på hvordan vi kan bruke Pandas DataFrame loc[]:

Eksempel 1: Velg en enkelt rad og kolonne etter etikett ved å bruke loc[]

Bruk DataFrame.loc-attributtet for å få tilgang til en bestemt celle i den gitte Pandas dataramme ved å bruke indeks- og kolonneetikettene. Vi velger deretter en enkelt rad og kolonne etter etikett ved å bruke loc[].

Python3






# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'Weight'>: [>45>,>88>,>56>,>15>,>71>],> >'Name'>: [>'Sam'>,>'Andrea'>,>'Alex'>,>'Robin'>,>'Kia'>],> >'Age'>: [>14>,>25>,>55>,>8>,>21>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Corrected selection using loc for a specific cell> result>=> df.loc[>'Row_2'>,>'Name'>]> # Print the result> print>(>' Selected Value at Row_2, Column 'Name':'>)> print>(result)>

>

>

Produksjon

Original DataFrame:  Weight Name Age Row_1 45 Sam 14 Row_2 88 Andrea 25 Row_3 56 Alex 55 Row_4 15 Robin 8 Row_5 71 Kia 21 Selected Value at Row_2, Column 'Name': Andrea>

Eksempel 2: Velg Flere rader og kolonner

Bruk DataFrame.loc-attributtet for å returnere to av kolonnene i den gitte Dataframe og velg deretter flere rader og kolonner som gjort i eksemplet nedenfor.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>:[>12>,>4>,>5>,>None>,>1>],> >'B'>:[>7>,>2>,>54>,>3>,>None>],> >'C'>:[>20>,>16>,>11>,>3>,>8>],> >'D'>:[>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Corrected column names ('A' and 'D') in the result> result>=> df.loc[:, [>'A'>,>'D'>]]> # Print the result> print>(>' Selected Columns 'A' and 'D':'>)> print>(result)>

>

>

Produksjon

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Selected Columns 'A' and 'D':  A D Row_1 12.0 14.0 Row_2 4.0 3.0 Row_3 5.0 NaN Row_4 NaN 2.0 Row_5 1.0 6.0>

Eksempel 3: Velg mellom to rader eller kolonner

I dette eksemplet lager vi en pandas DataFrame kalt 'df', setter tilpassede radindekser og bruker deretterloc>accessor for å velge rader mellom 'Row_2' og 'Row_4' inklusive og kolonnene 'B' til og med 'D'. De valgte radene og kolonnene skrives ut, og demonstrerer bruken av etikettbasert indeksering medloc>.

Python3




java switch uttalelse

# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Select Rows Between 'Row_2' and 'Row_4'> selected_rows>=> df.loc[>'Row_2'>:>'Row_4'>]> print>(>' Selected Rows:'>)> print>(selected_rows)> # Select Columns 'B' through 'D'> selected_columns>=> df.loc[:,>'B'>:>'D'>]> print>(>' Selected Columns:'>)> print>(selected_columns)>

>

>

Produksjon

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Selected Rows:  A B C D Row_2 4 2 16 3.0 Row_3 5 54 11 NaN Row_4 NaN 3 3 2.0 Selected Columns:  B C D Row_1 7 20 14.0 Row_2 2 16 3.0 Row_3 54 11 NaN Row_4 3 3 2.0 Row_5 NaN 8 6.0>

Eksempel 4: Velg alternative rader eller kolonner

I dette eksemplet lager vi en pandas DataFrame kalt 'df', setter tilpassede radindekser og bruker deretteriloc>accessor for å velge alternative rader (hver andre rad) og alternative kolonner (hver andre kolonne). De resulterende valgene skrives ut, og viser bruken av heltallsbasert indeksering mediloc>.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Select Alternate Rows> alternate_rows>=> df.iloc[::>2>]> print>(>' Alternate Rows:'>)> print>(alternate_rows)> # Select Alternate Columns> alternate_columns>=> df.iloc[:, ::>2>]> print>(>' Alternate Columns:'>)> print>(alternate_columns)>

>

>

Produksjon

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Alternate Rows:  A B C D Row_1 12.0 7 20 14.0 Row_3 5.0 54 11 NaN Row_5 1.0 NaN 8 6.0 Alternate Columns:  A C Row_1 12.0 20 Row_2 4.0 16 Row_3 5.0 11 Row_4 NaN 3 Row_5 1.0 8>

Eksempel 5: Bruke betingelser med Pandas loc

I dette eksemplet lager vi en pandas DataFrame kalt 'df', setter tilpassede radindekser og brukerloc>accessor for å velge rader basert på forhold. Den demonstrerer valg av rader der kolonne 'A' har verdier større enn 5 og valg av rader der kolonne 'B' ikke er null. De resulterende valgene blir deretter skrevet ut, og viser bruken av betinget filtrering medloc>.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Using Conditions with loc> # Example: Select rows where column 'A' is greater than 5> selected_rows>=> df.loc[df[>'A'>]>>5>]> print>(>' Rows where column 'A' is greater than 5:'>)> print>(selected_rows)> # Example: Select rows where column 'B' is not null> non_null_rows>=> df.loc[df[>'B'>].notnull()]> print>(>' Rows where column 'B' is not null:'>)> print>(non_null_rows)>

>

>

Produksjon

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Rows where column 'A' is greater than 5:  A B C D Row_1 12.0 7 20 14.0 Row_3 5.0 54 11 NaN Rows where column 'B' is not null:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0>