En introduksjon til A*-søkealgoritme i AI
A* (uttales 'A-stjerne') er en kraftig grafovergang og banesøkende algoritme som er mye brukt innen kunstig intelligens og informatikk. Den brukes hovedsakelig til å finne den korteste veien mellom to noder i en graf, gitt den estimerte kostnaden for å komme fra gjeldende node til destinasjonsnoden. Den største fordelen med algoritmen er dens evne til å gi en optimal vei ved å utforske grafen på en mer informert måte sammenlignet med tradisjonelle søkealgoritmer som Dijkstras algoritme.
Algoritme A* kombinerer fordelene med to andre søkealgoritmer: Dijkstras algoritme og Greedy Best-First Search. I likhet med Dijkstras algoritme, sikrer A* at banen som er funnet er så kort som mulig, men gjør det mer effektivt ved å lede søket gjennom en heuristikk som ligner på Greedy Best-First Search. En heuristisk funksjon, betegnet h(n), estimerer kostnadene for å komme fra en gitt node n til destinasjonsnoden.
Hovedideen til A* er å evaluere hver node basert på to parametere:
sammenligne streng java
Algoritme A* velger nodene som skal utforskes basert på den laveste verdien av f(n), og foretrekker nodene med den laveste estimerte totale kostnaden for å nå målet. A*-algoritmen fungerer:
- Lag en åpen liste over funne, men ikke utforskede noder.
- Opprett en lukket liste for å inneholde allerede utforskede noder.
- Legg til en startnode til den åpne listen med startverdien g
- Gjenta følgende trinn til den åpne listen er tom eller du når målnoden:
- Finn noden med den minste f-verdien (dvs. noden med minor g(n) h(n)) i den åpne listen.
- Flytt den valgte noden fra den åpne listen til den lukkede listen.
- Opprett alle gyldige etterkommere av den valgte noden.
- For hver etterfølger beregner du g-verdien som summen av gjeldende nodes g-verdi og kostnadene ved å flytte fra gjeldende node til etterfølgernoden. Oppdater g-verdien til trackeren når en bedre sti er funnet.
- Hvis følgeren ikke er på den åpne listen, legg den til med den beregnede g-verdien og beregn dens h-verdi. Hvis den allerede er i den åpne listen, oppdater g-verdien hvis den nye banen er bedre.
- Gjenta syklusen. Algoritme A* avsluttes når målnoden er nådd eller når den åpne listen tømmes, noe som indikerer ingen veier fra startnoden til målnoden. A*-søkealgoritmen er mye brukt i ulike felt som robotikk, videospill, nettverksruting og designproblemer fordi den er effektiv og kan finne optimale veier i grafer eller nettverk.
Men å velge en egnet og akseptabel heuristisk funksjon er avgjørende for at algoritmen skal fungere riktig og gi en optimal løsning.
Historien om A*-søkealgoritmen i kunstig intelligens
Den ble utviklet av Peter Hart, Nils Nilsson og Bertram Raphael ved Stanford Research Institute (nå SRI International) som en forlengelse av Dijkstras algoritme og andre søkealgoritmer på den tiden. A* ble først utgitt i 1968 og fikk raskt anerkjennelse for sin betydning og effektivitet i kunstig intelligens og datavitenskap. Her er en kort oversikt over de mest kritiske milepælene i historien til søkealgoritmen A*:
Hvordan fungerer A*-søkealgoritmen i kunstig intelligens?
A* (uttales 'bokstav A')-søkealgoritmen er en populær og mye brukt graftraversalalgoritme innen kunstig intelligens og informatikk. Den brukes til å finne den korteste veien fra en startnode til en destinasjonsnode i en vektet graf. A* er en informert søkealgoritme som bruker heuristikk for å veilede søket effektivt. Søkealgoritmen A* fungerer som følger:
Algoritmen starter med en prioritert kø for å lagre nodene som skal utforskes. Den instansierer også to datastrukturer g(n): Kostnaden for den korteste veien så langt fra startnoden til noden n og h(n), den estimerte kostnaden (heuristisk) fra noden n til destinasjonsnoden. Det er ofte en rimelig heuristikk, noe som betyr at den aldri overvurderer de faktiske kostnadene ved å oppnå et mål. Sett startnoden i prioritetskøen og sett dens g(n) til 0. Hvis prioritetskøen ikke er tom, Fjern noden med lavest f(n) fra prioritetskøen. f(n) = g(n) h(n). Hvis den slettede noden er målnoden, avsluttes algoritmen, og banen blir funnet. Ellers utvider du noden og oppretter dens naboer. For hver nabonode beregner du dens innledende g(n)-verdi, som er summen av g-verdien til den nåværende noden og kostnadene ved å flytte fra den nåværende noden til en nabonode. Hvis nabonoden ikke er i prioritert rekkefølge eller den opprinnelige g(n)-verdien er mindre enn gjeldende g-verdi, oppdater g-verdien og sett overordnet node til gjeldende node. Beregn f(n)-verdien fra nabonoden og legg den til prioritetskøen.
Hvis syklusen avsluttes uten å finne destinasjonsnoden, har grafen ingen bane fra start til slutt. Nøkkelen til effektiviteten til A* er bruken av en heuristisk funksjon h(n) som gir et estimat av gjenværende kostnad for å nå målet til en hvilken som helst node. Ved å kombinere den faktiske kostnaden g (n) med den heuristiske kostnaden h (n), utforsker algoritmen effektivt lovende veier, og prioriterer noder som sannsynligvis vil føre til den korteste veien. Det er viktig å merke seg at effektiviteten til A*-algoritmen er svært avhengig av valget av den heuristiske funksjonen. Akseptable heuristikk sikrer at algoritmen alltid finner den korteste veien, men mer informert og nøyaktig heuristikk kan føre til raskere konvergens og redusert søkerom.
Fordeler med A*-søkealgoritme i kunstig intelligens
A*-søkealgoritmen tilbyr flere fordeler i kunstig intelligens og problemløsningsscenarier:
Ulemper med A*-søkealgoritme i kunstig intelligens
Selv om A* (bokstav A) søkealgoritmen er en mye brukt og kraftig teknikk for å løse AI-banesøking og grafovergangproblemer, har den ulemper og begrensninger. Her er noen av de største ulempene med søkealgoritmen:
Anvendelser av A*-søkealgoritmen i kunstig intelligens
Søkealgoritmen A* (bokstav A) er en mye brukt og robust stifinnende algoritme innen kunstig intelligens og informatikk. Dens effektivitet og optimalitet gjør den egnet for ulike bruksområder. Her er noen typiske anvendelser av A*-søkealgoritmen i kunstig intelligens:
dhanashree verma
Dette er bare noen få eksempler på hvordan A*-søkealgoritmen finner applikasjoner innen ulike områder av kunstig intelligens. Dens fleksibilitet, effektivitet og optimalisering gjør den til et verdifullt verktøy for mange problemer.
C-program for A*-søkealgoritme i kunstig intelligens
#include #include #define ROWS 5 #define COLS 5 // Define a structure for a grid cell typedef struct { int row, col; } Cell; // Define a structure for a node in the A* algorithm typedef struct { Cell position; int g, h, f; struct Node* parent; } Node; // Function to calculate the Manhattan distance between two cells int heuristic(Cell current, Cell goal) { return abs(current.row - goal.row) + abs(current.col - goal.col); } // Function to check if a cell is valid (within the grid and not an obstacle) int isValid(int row, int col, int grid[ROWS][COLS]) { return (row >= 0) && (row = 0) && (col <cols) && (grid[row][col]="=" 0); } function to check if a cell is the goal int isgoal(cell cell, goal) { return (cell.row="=" goal.row) (cell.col="=" goal.col); perform a* search algorithm void astarsearch(int grid[rows][cols], start, todo: implement here main() grid[rows][cols]="{" {0, 1, 0, 0}, 0} }; start="{0," 0}; - cols 1}; astarsearch (grid, goal); 0; < pre> <p> <strong>Explanation:</strong> </p> <ol class="points"> <tr><td>Data Structures:</td> A cell structure represents a grid cell with a row and a column. The node structure stores information about a cell during an A* lookup, including its location, cost (g, h, f), and a reference to its parent. </tr><tr><td>Heuristic function (heuristic):</td> This function calculates the Manhattan distance (also known as a 'cab ride') between two cells. It is used as a heuristic to estimate the cost from the current cell to the target cell. The Manhattan distance is the sum of the absolute differences between rows and columns. </tr><tr><td>Validation function (isValid):</td> This function checks if the given cell is valid, i.e., whether it is within the grid boundaries and is not an obstacle (indicated by a grid value of 1). </tr><tr><td>Goal check function (isGoal):</td> This function checks if the given cell is a target cell, i.e., does it match the coordinates of the target cell. </tr><tr><td>Search function* (AStarSearch):</td> This is the main function where the A* search algorithm should be applied. It takes a grid, a source cell, and a target cell as inputs. This activity aims to find the shortest path from the beginning to the end, avoiding the obstacles on the grid. The main function initializes a grid representing the environment, a start, and a target cell. It then calls the AStarSearch function with those inputs. </tr></ol> <p> <strong>Sample Output</strong> </p> <pre> (0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) </pre> <h3>C++ program for A* Search Algorithm in Artificial Intelligence</h3> <pre> #include #include #include using namespace std; struct Node { int x, y; // Coordinates of the node int g; // Cost from the start node to this node int h; // Heuristic value (estimated cost from this node to the goal node) Node* parent; // Parent node in the path Node (int x, int y): x(x), y(y), g(0), h(0), parent(nullptr) {} // Calculate the total cost (f = g + h) int f () const { return g + h; } }; // Heuristic function (Euclidean distance) int calculateHeuristic (int x, int y, int goals, int goal) { return static cast (sqrt (pow (goals - x, 2) + pow (goal - y, 2))); } // A* search algorithm vector<pair> AStarSearch (int startX, int startY, int goals, int goal, vector<vector>& grid) { vector<pair> path; int rows = grid. size (); int cols = grid [0].size (); // Create the open and closed lists Priority queue <node*, vector, function> open List([](Node* lhs, Node* rhs) { return lhs->f() > rhs->f(); }); vector<vector> closed List (rows, vector (cols, false)); // Push the start node to the open list openList.push(start Node); // Main A* search loop while (! Open-list. Empty ()) { // Get the node with the lowest f value from the open list Node* current = open-list. Top (); openest. pop (); // Check if the current node is the goal node if (current->x == goals && current->y == goal) { // Reconstruct the path while (current! = nullptr) { path. push_back(make_pair(current->x, current->y)); current = current->parent; } Reverse (path. Begin(), path.end ()); break; } // Mark the current node as visited (in the closed list) Closed-list [current->x] [current->y] = true; // Generate successors (adjacent nodes) int dx [] = {1, 0, -1, 0}; int dy [] = {0, 1, 0, -1}; for (int i = 0; i x + dx [i]; int new Y = current->y + dy [i]; } break; } successor->parent = current; open List.push(successor); } // Cleanup memory for (Node* node: open List) { delete node; } return path; } int main () { int rows, cols; cout <> rows; cout <> cols; vector<vector> grid (rows, vector(cols)); cout << 'Enter the grid (0 for empty, 1 for obstacle):' << endl; for (int i = 0; i < rows; i++) { for (int j = 0; j> grid[i][j]; } } int startX, startY, goalX, goalY; cout <> startX >> start; cout <> goals >> goals; vector<pair> path = AStarSearch (startX, startY, goal, goal, grid); if (! path. Empty ()) { cout << 'Shortest path from (' << startX << ',' << start << ') to (' << goal << ',' << goal << '):' << endl; for (const auto& point: path) { cout << '(' << point. first << ',' << point. second << ') '; } cout << endl; } else { cout << 'No path found!' << endl; } return 0; } </pair></vector></vector></node*,></pair></vector></pair></pre> <p> <strong>Explanation:</strong> </p> <ol class="points"> <tr><td>Struct Node:</td> This defines a nodestructure that represents a grid cell. It contains the x and y coordinates of the node, the cost g from the starting node to that node, the heuristic value h (estimated cost from that node to the destination node), and a pointer to the <li>starting node of the path.</li> </tr><tr><td>Calculate heuristic:</td> This function calculates a heuristic using the Euclidean distance between a node and the target AStarSearch: This function runs the A* search algorithm. It takes the start and destination coordinates, a grid, and returns a vector of pairs representing the coordinates of the shortest path from start to finish. </tr><tr><td>Primary:</td> The program's main function takes input grids, origin, and target coordinates from the user. It then calls AStarSearch to find the shortest path and prints the result. Struct Node: This defines a node structure that represents a grid cell. It contains the x and y coordinates of the node, the cost g from the starting node to that node, the heuristic value h (estimated cost from that node to the destination node), and a pointer to the starting node of the path. </tr><tr><td>Calculate heuristic:</td> This function calculates heuristics using the Euclidean distance between a node and the target AStarSearch: This function runs the A* search algorithm. It takes the start and destination coordinates, a grid, and returns a vector of pairs representing the coordinates of the shortest path from start to finish. </tr></ol> <p> <strong>Sample Output</strong> </p> <pre> Enter the number of rows: 5 Enter the number of columns: 5 Enter the grid (0 for empty, 1 for obstacle): 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 Enter the start coordinates (x y): 0 0 Enter the goal coordinates (x y): 4 4 </pre> <h3>Java program for A* Search Algorithm in Artificial Intelligence</h3> <pre> import java. util.*; class Node { int x, y; // Coordinates of the node int g; // Cost from the start node to the current node int h; // Heuristic value (estimated cost from the current node to goal node) int f; // Total cost f = g + h Node parent; // Parent node in the path public Node (int x, int y) { this. g = x; this. f = y; this. Parent = null; } } public class AStarSearch { // Heuristic function (Manhattan distance) private static int heuristic (Node current, Node goal) { return Math. Abs (current.x - goal.x) + Math. Abs(current.y - goal.y); } // A* search algorithm public static List aStarSearch(int [][] grid, Node start, Node goal) { int rows = grid. Length; int cols = grid [0].length; // Add the start node to the open set opened.add(start); while (! openSet.isEmpty()) { // Get the node with the lowest f value from the open set Node current = openSet.poll(); // If the current node is the goal node, reconstruct the path and return it if (current == goal) { List path = new ArrayList(); while (current != null) { path.add(0, current); current = current.parent; } return path; } // Move the current node from the open set to the closed set closedSet.add(current); // Generate neighbors of the current node int[] dx = {-1, 0, 1, 0}; int[] dy = {0, -1, 0, 1}; for (int i = 0; i = 0 && nx = 0 && ny = neighbor.g) { // Skip this neighbor as it is already in the closed set with a lower or equal g value continue; } if (!openSet.contains(neighbor) || tentativeG <neighbor.g) { update the neighbor's values neighbor.g="tentativeG;" neighbor.h="heuristic(neighbor," goal); neighbor.f="neighbor.g" + neighbor.h; neighbor.parent="current;" if (!openset.contains(neighbor)) add neighbor to open set not already present openset.add(neighbor); } is empty and goal reached, there no path return null; public static void main(string[] args) int[][] grid="{" {0, 0, 0}, 1, 0} }; node start="new" node(0, 0); node(4, 4); list start, (path !="null)" system.out.println('path found:'); for (node : path) system.out.println('(' node.x ', ' node.y ')'); else system.out.println('no found.'); < pre> <p> <strong>Explanation:</strong> </p> <ol class="points"> <tr><td>Node Class:</td> We start by defining a nodeclass representing each grid cell. Each node contains coordinates (x, y), an initial node cost (g), a heuristic value (h), a total cost (f = g h), and a reference to the parent node of the path. </tr><tr><td>Heuristicfunction:</td> The heuristic function calculates the Manhattan distance between a node and a destination The Manhattan distance is a heuristic used to estimate the cost from the current node to the destination node. </tr><tr><td>Search algorithm* function:</td> A Star Search is the primary implementation of the search algorithm A*. It takes a 2D grid, a start node, and a destination node as inputs and returns a list of nodes representing the path from the start to the destination node. </tr><tr><td>Priority Queue and Closed Set:</td> The algorithm uses a priority queue (open Set) to track thenodes to be explored. The queue is ordered by total cost f, so the node with the lowest f value is examined The algorithm also uses a set (closed set) to track the explored nodes. </tr><tr><td>The main loop of the algorithm:</td> The main loop of the A* algorithm repeats until there are no more nodes to explore in the open Set. In each iteration, the node f with the lowest total cost is removed from the opener, and its neighbors are created. </tr><tr><td>Creating neighbors:</td> The algorithm creates four neighbors (up, down, left, right) for each node and verifies that each neighbor is valid (within the network boundaries and not as an obstacle). If the neighbor is valid, it calculates the initial value g from the source node to that neighbor and the heuristic value h from that neighbor to the destination The total cost is then calculated as the sum of f, g, and h. </tr><tr><td>Node evaluation:</td> The algorithm checks whether the neighbor is already in the closed set and, if so, whether the initial cost g is greater than or equal to the existing cost of the neighbor If true, the neighbor is omitted. Otherwise, the neighbor values are updated and added to the open Set if it is not already there. </tr><tr><td>Pathreconstruction:</td> When the destination node is reached, the algorithm reconstructs the path from the start node to the destination node following the main links from the destination node back to the start node. The path is returned as a list of nodes </tr></ol> <p> <strong>Sample Output</strong> </p> <pre> Path found: (0, 0) (0, 1) (1, 1) (2, 1) (2, 2) (3, 2) (4, 2) (4, 3) (4, 4) </pre> <h2>A* Search Algorithm Complexity in Artificial Intelligence</h2> <p>The A* (pronounced 'A-star') search algorithm is a popular and widely used graph traversal and path search algorithm in artificial intelligence. Finding the shortest path between two nodes in a graph or grid-based environment is usually common. The algorithm combines Dijkstra's and greedy best-first search elements to explore the search space while ensuring optimality efficiently. Several factors determine the complexity of the A* search algorithm. Graph size (nodes and edges): A graph's number of nodes and edges greatly affects the algorithm's complexity. More nodes and edges mean more possible options to explore, which can increase the execution time of the algorithm.</p> <p>Heuristic function: A* uses a heuristic function (often denoted h(n)) to estimate the cost from the current node to the destination node. The precision of this heuristic greatly affects the efficiency of the A* search. A good heuristic can help guide the search to a goal more quickly, while a bad heuristic can lead to unnecessary searching.</p> <ol class="points"> <tr><td>Data Structures:</td> A* maintains two maindata structures: an open list (priority queue) and a closed list (or visited pool). The efficiency of these data structures, along with the chosen implementation (e.g., priority queue binary heaps), affects the algorithm's performance. </tr><tr><td>Branch factor:</td> The average number of followers for each node affects the number of nodes expanded during the search. A higher branching factor can lead to more exploration, which increases </tr><tr><td>Optimality and completeness:</td> A* guarantees both optimality (finding the shortest path) and completeness (finding a solution that exists). However, this guarantee comes with a trade-off in terms of computational complexity, as the algorithm must explore different paths for optimal performance. Regarding time complexity, the chosen heuristic function affects A* in the worst case. With an accepted heuristic (which never overestimates the true cost of reaching the goal), A* expands the fewest nodes among the optimization algorithms. The worst-case time complexity of A * is exponential in the worst-case O(b ^ d), where 'b' is the effective branching factor (average number of followers per node) and 'd' is the optimal </tr></ol> <p>In practice, however, A* often performs significantly better due to the influence of a heuristic function that helps guide the algorithm to promising paths. In the case of a well-designed heuristic, the effective branching factor is much smaller, which leads to a faster approach to the optimal solution.</p> <hr></neighbor.g)></pre></cols)>
C++-program for A* Search Algorithm in Artificial Intelligence
#include #include #include using namespace std; struct Node { int x, y; // Coordinates of the node int g; // Cost from the start node to this node int h; // Heuristic value (estimated cost from this node to the goal node) Node* parent; // Parent node in the path Node (int x, int y): x(x), y(y), g(0), h(0), parent(nullptr) {} // Calculate the total cost (f = g + h) int f () const { return g + h; } }; // Heuristic function (Euclidean distance) int calculateHeuristic (int x, int y, int goals, int goal) { return static cast (sqrt (pow (goals - x, 2) + pow (goal - y, 2))); } // A* search algorithm vector<pair> AStarSearch (int startX, int startY, int goals, int goal, vector<vector>& grid) { vector<pair> path; int rows = grid. size (); int cols = grid [0].size (); // Create the open and closed lists Priority queue <node*, vector, function> open List([](Node* lhs, Node* rhs) { return lhs->f() > rhs->f(); }); vector<vector> closed List (rows, vector (cols, false)); // Push the start node to the open list openList.push(start Node); // Main A* search loop while (! Open-list. Empty ()) { // Get the node with the lowest f value from the open list Node* current = open-list. Top (); openest. pop (); // Check if the current node is the goal node if (current->x == goals && current->y == goal) { // Reconstruct the path while (current! = nullptr) { path. push_back(make_pair(current->x, current->y)); current = current->parent; } Reverse (path. Begin(), path.end ()); break; } // Mark the current node as visited (in the closed list) Closed-list [current->x] [current->y] = true; // Generate successors (adjacent nodes) int dx [] = {1, 0, -1, 0}; int dy [] = {0, 1, 0, -1}; for (int i = 0; i x + dx [i]; int new Y = current->y + dy [i]; } break; } successor->parent = current; open List.push(successor); } // Cleanup memory for (Node* node: open List) { delete node; } return path; } int main () { int rows, cols; cout <> rows; cout <> cols; vector<vector> grid (rows, vector(cols)); cout << 'Enter the grid (0 for empty, 1 for obstacle):' << endl; for (int i = 0; i < rows; i++) { for (int j = 0; j> grid[i][j]; } } int startX, startY, goalX, goalY; cout <> startX >> start; cout <> goals >> goals; vector<pair> path = AStarSearch (startX, startY, goal, goal, grid); if (! path. Empty ()) { cout << 'Shortest path from (' << startX << ',' << start << ') to (' << goal << ',' << goal << '):' << endl; for (const auto& point: path) { cout << '(' << point. first << ',' << point. second << ') '; } cout << endl; } else { cout << 'No path found!' << endl; } return 0; } </pair></vector></vector></node*,></pair></vector></pair>
Forklaring:
- startnoden til banen.
Eksempelutgang
Enter the number of rows: 5 Enter the number of columns: 5 Enter the grid (0 for empty, 1 for obstacle): 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 Enter the start coordinates (x y): 0 0 Enter the goal coordinates (x y): 4 4
Java-program for A* Search Algorithm in Artificial Intelligence
import java. util.*; class Node { int x, y; // Coordinates of the node int g; // Cost from the start node to the current node int h; // Heuristic value (estimated cost from the current node to goal node) int f; // Total cost f = g + h Node parent; // Parent node in the path public Node (int x, int y) { this. g = x; this. f = y; this. Parent = null; } } public class AStarSearch { // Heuristic function (Manhattan distance) private static int heuristic (Node current, Node goal) { return Math. Abs (current.x - goal.x) + Math. Abs(current.y - goal.y); } // A* search algorithm public static List aStarSearch(int [][] grid, Node start, Node goal) { int rows = grid. Length; int cols = grid [0].length; // Add the start node to the open set opened.add(start); while (! openSet.isEmpty()) { // Get the node with the lowest f value from the open set Node current = openSet.poll(); // If the current node is the goal node, reconstruct the path and return it if (current == goal) { List path = new ArrayList(); while (current != null) { path.add(0, current); current = current.parent; } return path; } // Move the current node from the open set to the closed set closedSet.add(current); // Generate neighbors of the current node int[] dx = {-1, 0, 1, 0}; int[] dy = {0, -1, 0, 1}; for (int i = 0; i = 0 && nx = 0 && ny = neighbor.g) { // Skip this neighbor as it is already in the closed set with a lower or equal g value continue; } if (!openSet.contains(neighbor) || tentativeG <neighbor.g) { update the neighbor\'s values neighbor.g="tentativeG;" neighbor.h="heuristic(neighbor," goal); neighbor.f="neighbor.g" + neighbor.h; neighbor.parent="current;" if (!openset.contains(neighbor)) add neighbor to open set not already present openset.add(neighbor); } is empty and goal reached, there no path return null; public static void main(string[] args) int[][] grid="{" {0, 0, 0}, 1, 0} }; node start="new" node(0, 0); node(4, 4); list start, (path !="null)" system.out.println(\'path found:\'); for (node : path) system.out.println(\'(\' node.x \', \' node.y \')\'); else system.out.println(\'no found.\'); < pre> <p> <strong>Explanation:</strong> </p> <ol class="points"> <tr><td>Node Class:</td> We start by defining a nodeclass representing each grid cell. Each node contains coordinates (x, y), an initial node cost (g), a heuristic value (h), a total cost (f = g h), and a reference to the parent node of the path. </tr><tr><td>Heuristicfunction:</td> The heuristic function calculates the Manhattan distance between a node and a destination The Manhattan distance is a heuristic used to estimate the cost from the current node to the destination node. </tr><tr><td>Search algorithm* function:</td> A Star Search is the primary implementation of the search algorithm A*. It takes a 2D grid, a start node, and a destination node as inputs and returns a list of nodes representing the path from the start to the destination node. </tr><tr><td>Priority Queue and Closed Set:</td> The algorithm uses a priority queue (open Set) to track thenodes to be explored. The queue is ordered by total cost f, so the node with the lowest f value is examined The algorithm also uses a set (closed set) to track the explored nodes. </tr><tr><td>The main loop of the algorithm:</td> The main loop of the A* algorithm repeats until there are no more nodes to explore in the open Set. In each iteration, the node f with the lowest total cost is removed from the opener, and its neighbors are created. </tr><tr><td>Creating neighbors:</td> The algorithm creates four neighbors (up, down, left, right) for each node and verifies that each neighbor is valid (within the network boundaries and not as an obstacle). If the neighbor is valid, it calculates the initial value g from the source node to that neighbor and the heuristic value h from that neighbor to the destination The total cost is then calculated as the sum of f, g, and h. </tr><tr><td>Node evaluation:</td> The algorithm checks whether the neighbor is already in the closed set and, if so, whether the initial cost g is greater than or equal to the existing cost of the neighbor If true, the neighbor is omitted. Otherwise, the neighbor values are updated and added to the open Set if it is not already there. </tr><tr><td>Pathreconstruction:</td> When the destination node is reached, the algorithm reconstructs the path from the start node to the destination node following the main links from the destination node back to the start node. The path is returned as a list of nodes </tr></ol> <p> <strong>Sample Output</strong> </p> <pre> Path found: (0, 0) (0, 1) (1, 1) (2, 1) (2, 2) (3, 2) (4, 2) (4, 3) (4, 4) </pre> <h2>A* Search Algorithm Complexity in Artificial Intelligence</h2> <p>The A* (pronounced 'A-star') search algorithm is a popular and widely used graph traversal and path search algorithm in artificial intelligence. Finding the shortest path between two nodes in a graph or grid-based environment is usually common. The algorithm combines Dijkstra's and greedy best-first search elements to explore the search space while ensuring optimality efficiently. Several factors determine the complexity of the A* search algorithm. Graph size (nodes and edges): A graph's number of nodes and edges greatly affects the algorithm's complexity. More nodes and edges mean more possible options to explore, which can increase the execution time of the algorithm.</p> <p>Heuristic function: A* uses a heuristic function (often denoted h(n)) to estimate the cost from the current node to the destination node. The precision of this heuristic greatly affects the efficiency of the A* search. A good heuristic can help guide the search to a goal more quickly, while a bad heuristic can lead to unnecessary searching.</p> <ol class="points"> <tr><td>Data Structures:</td> A* maintains two maindata structures: an open list (priority queue) and a closed list (or visited pool). The efficiency of these data structures, along with the chosen implementation (e.g., priority queue binary heaps), affects the algorithm's performance. </tr><tr><td>Branch factor:</td> The average number of followers for each node affects the number of nodes expanded during the search. A higher branching factor can lead to more exploration, which increases </tr><tr><td>Optimality and completeness:</td> A* guarantees both optimality (finding the shortest path) and completeness (finding a solution that exists). However, this guarantee comes with a trade-off in terms of computational complexity, as the algorithm must explore different paths for optimal performance. Regarding time complexity, the chosen heuristic function affects A* in the worst case. With an accepted heuristic (which never overestimates the true cost of reaching the goal), A* expands the fewest nodes among the optimization algorithms. The worst-case time complexity of A * is exponential in the worst-case O(b ^ d), where 'b' is the effective branching factor (average number of followers per node) and 'd' is the optimal </tr></ol> <p>In practice, however, A* often performs significantly better due to the influence of a heuristic function that helps guide the algorithm to promising paths. In the case of a well-designed heuristic, the effective branching factor is much smaller, which leads to a faster approach to the optimal solution.</p> <hr></neighbor.g)>
A* Søkealgoritmekompleksitet i kunstig intelligens
A* (uttales 'A-stjerne') søkealgoritme er en populær og mye brukt grafovergang og banesøkealgoritme innen kunstig intelligens. Å finne den korteste veien mellom to noder i et graf- eller rutenettbasert miljø er vanligvis vanlig. Algoritmen kombinerer Dijkstras og grådige best-first-søkeelementer for å utforske søkeområdet samtidig som den sikrer optimalitet effektivt. Flere faktorer bestemmer kompleksiteten til A*-søkealgoritmen. Grafstørrelse (noder og kanter): En grafs antall noder og kanter påvirker i stor grad algoritmens kompleksitet. Flere noder og kanter betyr flere mulige alternativer å utforske, noe som kan øke utførelsestiden til algoritmen.
Heuristisk funksjon: A* bruker en heuristisk funksjon (ofte betegnet h(n)) for å estimere kostnaden fra gjeldende node til destinasjonsnoden. Presisjonen til denne heuristikken påvirker i stor grad effektiviteten til A*-søket. En god heuristikk kan hjelpe søket til et mål raskere, mens en dårlig heuristikk kan føre til unødvendig søking.
I praksis presterer imidlertid A* ofte betydelig bedre på grunn av påvirkningen fra en heuristisk funksjon som hjelper til med å lede algoritmen til lovende baner. Ved en godt utformet heuristikk er den effektive forgreningsfaktoren mye mindre, noe som fører til en raskere tilnærming til den optimale løsningen.