Gitt en streng som består av bare små bokstaver og et heltall k teller det totale antallet underlag (ikke nødvendigvis distinkte) av s som inneholder nøyaktig k distinkte tegn.
Note:
- En substring er en sammenhengende sekvens av tegn i en streng.
- Substrlinger som er identiske, men forekommer i forskjellige posisjoner, bør telles hver for seg.
Eksempler:
: s = 'abc' k = 2
Produksjon: 2
Forklaring: Mulige underlag er ['AB' 'BC']: s = 'aba' k = 2
Produksjon: 3
Forklaring: Mulige underlag er ['ab' 'ba' 'aba']: s = 'aa' k = 1
Produksjon: 3
Forklaring: Mulige underlag er ['A' 'A' 'AA']
Tabell over innhold
- [Naiv tilnærming] Kontroller alle underlag - O (N^2) Tid og O (1) plass
- [Effektiv tilnærming] Bruke glidende vindusmetode - o (n) tid og o (1) plass
[Naiv tilnærming] Kontroller alle underlag - O (N^2) Tid og O (1) plass
C++Tanken er å sjekke alle mulige substring ved å iterere gjennom alle mulige startposisjoner (I) og sluttposisjoner (J) i strengen. For hver substring opprettholder en boolsk matrise for å spore distinkte tegn og en teller for antall distinkte tegn. Når den utvider substringen fra venstre mot høyre, oppdaterer den det distinkte karaktertellingen ved å sjekke om hvert nye tegn har blitt sett før. Hver gang antallet distinkte karakterer nøyaktig samsvarer med de gitte k, øker det svaretellingen.
#include #include using namespace std; int countSubstr(string &s int k) { int n = s.length(); int ans = 0; for (int i=0; i<n; i++) { // array to check if a character // is present in substring i..j vector<bool> map(26 0); int distinctCnt = 0; for (int j=i; j<n; j++) { // if new character is present // increment distinct count. if (map[s[j] - 'a'] == false) { map[s[j] - 'a'] = true; distinctCnt++; } // if distinct count is equal to k. if (distinctCnt == k) ans++; } } return ans; } int main() { string s = 'abc'; int k = 2; cout << countSubstr(s k); return 0; }
Java class GfG { static int countSubstr(String s int k) { int n = s.length(); int ans = 0; for (int i = 0; i < n; i++) { // array to check if a character // is present in substring i..j boolean[] map = new boolean[26]; int distinctCnt = 0; for (int j = i; j < n; j++) { // if new character is present // increment distinct count. if (!map[s.charAt(j) - 'a']) { map[s.charAt(j) - 'a'] = true; distinctCnt++; } // if distinct count is equal to k. if (distinctCnt == k) ans++; } } return ans; } public static void main(String[] args) { String s = 'abc'; int k = 2; System.out.println(countSubstr(s k)); } }
Python def countSubstr(s k): n = len(s) ans = 0 for i in range(n): # array to check if a character # is present in substring i..j map = [False] * 26 distinctCnt = 0 for j in range(i n): # if new character is present # increment distinct count. if not map[ord(s[j]) - ord('a')]: map[ord(s[j]) - ord('a')] = True distinctCnt += 1 # if distinct count is equal to k. if distinctCnt == k: ans += 1 return ans if __name__ == '__main__': s = 'abc' k = 2 print(countSubstr(s k))
C# using System; class GfG { static int countSubstr(string s int k) { int n = s.Length; int ans = 0; for (int i = 0; i < n; i++) { // array to check if a character // is present in substring i..j bool[] map = new bool[26]; int distinctCnt = 0; for (int j = i; j < n; j++) { // if new character is present // increment distinct count. if (!map[s[j] - 'a']) { map[s[j] - 'a'] = true; distinctCnt++; } // if distinct count is equal to k. if (distinctCnt == k) ans++; } } return ans; } static void Main() { string s = 'abc'; int k = 2; Console.WriteLine(countSubstr(s k)); } }
JavaScript function countSubstr(s k) { let n = s.length; let ans = 0; for (let i = 0; i < n; i++) { // array to check if a character // is present in substring i..j let map = new Array(26).fill(false); let distinctCnt = 0; for (let j = i; j < n; j++) { // if new character is present // increment distinct count. if (!map[s.charCodeAt(j) - 'a'.charCodeAt(0)]) { map[s.charCodeAt(j) - 'a'.charCodeAt(0)] = true; distinctCnt++; } // if distinct count is equal to k. if (distinctCnt === k) ans++; } } return ans; } // Driver Code let s = 'abc'; let k = 2; console.log(countSubstr(s k));
Produksjon
2
[Effektiv tilnærming] Bruke glidende vindusmetode - o (n) tid og o (1) plass
Tanken er å bruke skyve vindu Teknikk for å effektivt telle underlag med høyst K-distinkte tegn og deretter trekke tellingen av underlag med høyst K-1 distinkte tegn for å oppnå antall underlag med nøyaktig K distinkte tegn.
Trinn for trinns implementering:
- Bruk et skyvevindu med en rekke størrelse 26 for å spore karakterfrekvenser.
- Utvid vinduet til høyre og legge til tegn.
- Krymp vinduet fra venstre når distinkte tegn overstiger k.
- Tell alle gyldige underlag i vinduet.
- Trekk underlag med K-1 distinkte tegn fra K-distinkte tegn.
#include #include using namespace std; // function which finds the number of // substrings with atmost k Distinct // characters. int count(string &s int k) { int n = s.length(); int ans = 0; // use sliding window technique vector<int> freq(26 0); int distinctCnt = 0; int i = 0; for (int j = 0; j < n; j++) { // expand window and add character freq[s[j] - 'a']++; if (freq[s[j] - 'a'] == 1) distinctCnt++; // shrink window if distinct characters exceed k while (distinctCnt > k) { freq[s[i] - 'a']--; if (freq[s[i] - 'a'] == 0) distinctCnt--; i++; } // add number of valid substrings ending at j ans += j - i + 1; } return ans; } // function to find the number of substrings // with exactly k Distinct characters. int countSubstr(string &s int k) { int n = s.length(); int ans = 0; // subtract substrings with at most // k-1 distinct characters from substrings // with at most k distinct characters ans = count(s k) - count(s k-1); return ans; } int main() { string s = 'abc'; int k = 2; cout << countSubstr(s k); return 0; }
Java class GfG { // function which finds the number of // substrings with atmost k Distinct // characters. static int count(String s int k) { int n = s.length(); int ans = 0; // use sliding window technique int[] freq = new int[26]; int distinctCnt = 0; int i = 0; for (int j = 0; j < n; j++) { // expand window and add character freq[s.charAt(j) - 'a']++; if (freq[s.charAt(j) - 'a'] == 1) distinctCnt++; // shrink window if distinct characters exceed k while (distinctCnt > k) { freq[s.charAt(i) - 'a']--; if (freq[s.charAt(i) - 'a'] == 0) distinctCnt--; i++; } // add number of valid substrings ending at j ans += j - i + 1; } return ans; } // function to find the number of substrings // with exactly k Distinct characters. static int countSubstr(String s int k) { int n = s.length(); int ans = 0; // Subtract substrings with at most // k-1 distinct characters from substrings // with at most k distinct characters ans = count(s k) - count(s k - 1); return ans; } public static void main(String[] args) { String s = 'abc'; int k = 2; System.out.println(countSubstr(s k)); } }
Python # function which finds the number of # substrings with atmost k Distinct # characters. def count(s k): n = len(s) ans = 0 # ese sliding window technique freq = [0] * 26 distinctCnt = 0 i = 0 for j in range(n): # expand window and add character freq[ord(s[j]) - ord('a')] += 1 if freq[ord(s[j]) - ord('a')] == 1: distinctCnt += 1 # shrink window if distinct characters exceed k while distinctCnt > k: freq[ord(s[i]) - ord('a')] -= 1 if freq[ord(s[i]) - ord('a')] == 0: distinctCnt -= 1 i += 1 # add number of valid substrings ending at j ans += j - i + 1 return ans # function to find the number of substrings # with exactly k Distinct characters. def countSubstr(s k): n = len(s) ans = 0 # subtract substrings with at most # k-1 distinct characters from substrings # with at most k distinct characters ans = count(s k) - count(s k - 1) return ans if __name__ == '__main__': s = 'abc' k = 2 print(countSubstr(s k))
C# using System; class GfG { // function which finds the number of // substrings with atmost k Distinct // characters. static int count(string s int k) { int n = s.Length; int ans = 0; // use sliding window technique int[] freq = new int[26]; int distinctCnt = 0; int i = 0; for (int j = 0; j < n; j++) { // expand window and add character freq[s[j] - 'a']++; if (freq[s[j] - 'a'] == 1) distinctCnt++; // shrink window if distinct characters exceed k while (distinctCnt > k) { freq[s[i] - 'a']--; if (freq[s[i] - 'a'] == 0) distinctCnt--; i++; } // add number of valid substrings ending at j ans += j - i + 1; } return ans; } // function to find the number of substrings // with exactly k Distinct characters. static int countSubstr(string s int k) { int n = s.Length; int ans = 0; // subtract substrings with at most // k-1 distinct characters from substrings // with at most k distinct characters ans = count(s k) - count(s k - 1); return ans; } static void Main() { string s = 'abc'; int k = 2; Console.WriteLine(countSubstr(s k)); } }
JavaScript // function which finds the number of // substrings with atmost k Distinct // characters. function count(s k) { let n = s.length; let ans = 0; // use sliding window technique let freq = new Array(26).fill(0); let distinctCnt = 0; let i = 0; for (let j = 0; j < n; j++) { // expand window and add character freq[s.charCodeAt(j) - 'a'.charCodeAt(0)]++; if (freq[s.charCodeAt(j) - 'a'.charCodeAt(0)] === 1) distinctCnt++; // shrink window if distinct characters exceed k while (distinctCnt > k) { freq[s.charCodeAt(i) - 'a'.charCodeAt(0)]--; if (freq[s.charCodeAt(i) - 'a'.charCodeAt(0)] === 0) distinctCnt--; i++; } // add number of valid substrings ending at j ans += j - i + 1; } return ans; } // sunction to find the number of substrings // with exactly k Distinct characters. function countSubstr(s k) { let n = s.length; let ans = 0; // subtract substrings with at most // k-1 distinct characters from substrings // with at most k distinct characters ans = count(s k) - count(s k - 1); return ans; } // Driver Code let s = 'abc'; let k = 2; console.log(countSubstr(s k));
Produksjon
2