logo

Finn siste siffer av a^b for store tall

Prøv det på GfG Practice ' title=

<= d <= 1000) and the index b (0 <= b <= 922*10^15). You have to find the last digit of a^b.
Eksempler: 
 

Input : 3 10  
Output : 9

Input : 6 2
Output : 6

Input : 150 53
Output : 0


 




Etter å ha tatt noen eksempler kan vi legge merke til mønsteret nedenfor.
 

Number | Last digits that repeat in cycle  
1 | 1
2 | 4 8 6 2
3 | 9 7 1 3
4 | 6 4
5 | 5
6 | 6
7 | 9 3 1 7
8 | 4 2 6 8
9 | 1 9


I den gitte tabellen kan vi se at maksimal lengde for syklusrepetisjon er 4. 
Eksempel: 2*2 = 4*2 = 8*2 = 16*2 = 32 siste siffer i 32 er 2, det vil si etter å ha multiplisert 4 ganger sifferet, gjenta seg selv. Så algoritmen er veldig enkel.
Kilde: Brilliants.org
Algoritme:
 

  1. Siden tall er veldig store lagrer vi dem som en streng.
  2. Ta siste siffer i grunntall a.
  3. Beregn nå b%4. Her er b veldig stor. 
    • Hvis b%4==0 betyr at b er helt delelig med 4, så vår eksponent nå vil være exp = 4 fordi ved å multiplisere tallet 4 ganger får vi det siste sifferet i henhold til syklustabellen i diagrammet ovenfor.
    • Hvis b%4!=0 betyr det at b ikke er helt delelig med 4, så vår eksponent nå vil være exp=b%4 fordi ved å multiplisere antall eksponent ganger får vi det siste sifferet i henhold til syklustabellen i diagrammet ovenfor.
    • Beregn nå ldigit = pow( siste_siffer_i_base exp ).
    • Siste siffer i a^b vil være ldigit%10.


Nedenfor er implementeringen av algoritmen ovenfor. 
 



C++
// C++ code to find last digit of a^b #include    using namespace std; // Function to find b % a int Modulo(int a char b[]) {  // Initialize result  int mod = 0;  // calculating mod of b with a to make  // b like 0 <= b < a  for (int i = 0; i < strlen(b); i++)  mod = (mod * 10 + b[i] - '0') % a;  return mod; // return modulo } // function to find last digit of a^b int LastDigit(char a[] char b[]) {  int len_a = strlen(a) len_b = strlen(b);  // if a and b both are 0  if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0')  return 1;  // if exponent is 0  if (len_b == 1 && b[0] == '0')  return 1;  // if base is 0  if (len_a == 1 && a[0] == '0')  return 0;  // if exponent is divisible by 4 that means last  // digit will be pow(a 4) % 10.  // if exponent is not divisible by 4 that means last  // digit will be pow(a b%4) % 10  int exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b);  // Find last digit in 'a' and compute its exponent  int res = pow(a[len_a - 1] - '0' exp);  // Return last digit of result  return res % 10; } // Driver program to run test case int main() {  char a[] = '117' b[] = '3';  cout << LastDigit(a b);  return 0; } 
Java
// Java code to find last digit of a^b import java.io.*; import java.math.*; class GFG {  // Function to find b % a  static int Modulo(int a char b[])  {  // Initialize result  int mod = 0;  // calculating mod of b with a to make  // b like 0 <= b < a  for (int i = 0; i < b.length; i++)  mod = (mod * 10 + b[i] - '0') % a;  return mod; // return modulo  }  // Function to find last digit of a^b  static int LastDigit(char a[] char b[])  {  int len_a = a.length len_b = b.length;  // if a and b both are 0  if (len_a == 1 && len_b == 1 && b[0] == '0' && a[0] == '0')  return 1;  // if exponent is 0  if (len_b == 1 && b[0] == '0')  return 1;  // if base is 0  if (len_a == 1 && a[0] == '0')  return 0;  // if exponent is divisible by 4 that means last  // digit will be pow(a 4) % 10.  // if exponent is not divisible by 4 that means last  // digit will be pow(a b%4) % 10  int exp = (Modulo(4 b) == 0) ? 4 : Modulo(4 b);  // Find last digit in 'a' and compute its exponent  int res = (int)(Math.pow(a[len_a - 1] - '0' exp));  // Return last digit of result  return res % 10;  }  // Driver program to run test case  public static void main(String args[]) throws IOException  {  char a[] = '117'.toCharArray() b[] = { '3' };  System.out.println(LastDigit(a b));  } } // This code is contributed by Nikita Tiwari. 
Python
def last_digit(a b): a = int(a) b = int(b) # if a and b both are 0 if a == 0 and b == 0: return 1 # if exponent is 0 if b == 0: return 1 # if base is 0 if a == 0: return 0 # if exponent is divisible by 4 that means last # digit will be pow(a 4) % 10. # if exponent is not divisible by 4 that means last # digit will be pow(a b%4) % 10 if b % 4 == 0: res = 4 else: res = b % 4 # Find last digit in 'a' and compute its exponent num = pow(a res) # Return last digit of num return num % 10 a = '117' b = '3' print(last_digit(ab)) # This code is contributed by Naimish14. 
C#
// C# code to find last digit of a^b. using System; class GFG {  // Function to find b % a  static int Modulo(int a char[] b)  {    // Initialize result  int mod = 0;  // calculating mod of b with a  // to make b like 0 <= b < a  for (int i = 0; i < b.Length; i++)  mod = (mod * 10 + b[i] - '0') % a;  // return modulo  return mod;  }  // Function to find last digit of a^b  static int LastDigit(char[] a char[] b)  {  int len_a = a.Length len_b = b.Length;  // if a and b both are 0  if (len_a == 1 && len_b == 1 &&   b[0] == '0' && a[0] == '0')  return 1;  // if exponent is 0  if (len_b == 1 && b[0] == '0')  return 1;  // if base is 0  if (len_a == 1 && a[0] == '0')  return 0;  // if exponent is divisible by 4  // that means last digit will be   // pow(a 4) % 10. if exponent is  //not divisible by 4 that means last  // digit will be pow(a b%4) % 10  int exp = (Modulo(4 b) == 0) ? 4   : Modulo(4 b);  // Find last digit in 'a' and   // compute its exponent  int res = (int)(Math.Pow(a[len_a - 1]  - '0' exp));  // Return last digit of result  return res % 10;  }  // Driver program to run test case  public static void Main()  {    char[] a = '117'.ToCharArray()  b = { '3' };    Console.Write(LastDigit(a b));  } } // This code is contributed by nitin mittal. 
JavaScript
<script> // Javascript code to find last digit of a^b // Function to find b % a function Modulo(a b) {    // Initialize result  let mod = 0;  // calculating mod of b with a to make  // b like 0 <= b < a  for (let i = 0; i < b.length; i++)  mod = (mod * 10 + b[i] - '0') % a;  return mod; // return modulo } // function to find last digit of a^b function LastDigit(a b) {  let len_a = a.length;   let len_b = b.length;  // if a and b both are 0  if (len_a == 1 && len_b == 1 &&  b[0] == '0' && a[0] == '0')  return 1;  // if exponent is 0  if (len_b == 1 && b[0] == '0')  return 1;  // if base is 0  if (len_a == 1 && a[0] == '0')  return 0;  // if exponent is divisible by 4 that  // means last digit will be pow(a 4)  // % 10. if exponent is not divisible  // by 4 that means last digit will be  // pow(a b%4) % 10  exp = (Modulo(4 b) == 0) ? 4 :  Modulo(4 b);  // Find last digit in 'a' and compute  // its exponent  res = Math.pow(a[len_a - 1] - '0' exp);  // Return last digit of result  return res % 10; } // Driver program to run test case let a = '117'; let b = '3'; document.write(LastDigit(a b)); // This code is contributed by _saurabh_jaiswal </script> 
PHP
 // php code to find last digit of a^b // Function to find b % a function Modulo($a $b) { // Initialize result $mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for ($i = 0; $i < strlen($b); $i++) $mod = ($mod * 10 + $b[$i] - '0') % $a; return $mod; // return modulo } // function to find last digit of a^b function LastDigit($a $b) { $len_a = strlen($a); $len_b = strlen($b); // if a and b both are 0 if ($len_a == 1 && $len_b == 1 && $b[0] == '0' && $a[0] == '0') return 1; // if exponent is 0 if ($len_b == 1 && $b[0] == '0') return 1; // if base is 0 if ($len_a == 1 && $a[0] == '0') return 0; // if exponent is divisible by 4 that // means last digit will be pow(a 4) // % 10. if exponent is not divisible  // by 4 that means last digit will be // pow(a b%4) % 10 $exp = (Modulo(4 $b) == 0) ? 4 : Modulo(4 $b); // Find last digit in 'a' and compute // its exponent $res = pow($a[$len_a - 1] - '0' $exp); // Return last digit of result return $res % 10; } // Driver program to run test case $a = '117'; $b = '3'; echo LastDigit($a $b); // This code is contributed by nitin mittal. ?> 

Utgang: 

3


Denne artikkelen er anmeldt av team geeksforgeeks.