Genetiske algoritmer (GAer) er adaptive heuristiske søkealgoritmer som tilhører størstedelen av evolusjonære algoritmer. Genetiske algoritmer er basert på ideene om naturlig utvalg og genetikk. Dette er intelligent utnyttelse av tilfeldige søk med historiske data for å lede søket inn i området med bedre ytelse i løsningsområdet. De brukes ofte til å generere løsninger av høy kvalitet for optimaliseringsproblemer og søkeproblemer.
Genetiske algoritmer simulerer prosessen med naturlig utvalg som betyr at de artene som kan tilpasse seg endringer i miljøet kan overleve og reprodusere og gå til neste generasjon. Med enkle ord simulerer de overlevelse av de sterkeste blant individer av påfølgende generasjoner for å løse et problem. Hver generasjon består av en populasjon av individer og hver enkelt representerer et punkt i søkerom og mulig løsning. Hvert individ er representert som en streng av tegn/heltall/float/bits. Denne strengen er analog med kromosomet.
Grunnlaget for genetiske algoritmer
Genetiske algoritmer er basert på en analogi med den genetiske strukturen og oppførselen til kromosomer i befolkningen. Følgende er grunnlaget for GA-er basert på denne analogien -
- Individer i befolkningen konkurrerer om ressurser og parer seg
- De individene som er vellykkede (sterkest) parer seg deretter for å skape flere avkom enn andre
- Gener fra de sterkeste foreldrene forplanter seg gjennom generasjonen, det vil si noen ganger skaper foreldre avkom som er bedre enn noen av foreldrene.
- Dermed er hver påfølgende generasjon mer egnet for sitt miljø.
Søk plass
Populasjonen av individer opprettholdes innenfor søkeområdet. Hvert individ representerer en løsning i søkerommet for gitt problem. Hvert individ er kodet som en vektor med begrenset lengde (analog med kromosom) av komponenter. Disse variable komponentene er analoge med gener. Dermed er et kromosom (individ) sammensatt av flere gener (variable komponenter).

Treningsresultat
En Fitness Score gis til hver enkelt som viser evnen til et individ til å konkurrere . Personen som har optimal kondisjonsscore (eller nær optimal) søkes etter.
GA-ene opprettholder populasjonen av n individer (kromosom/løsninger) sammen med kondisjonsskårene deres. Individene som har bedre kondisjonsscore får større sjanse til å reprodusere seg enn andre. Personene med bedre kondisjonsscore velges ut som parer seg og produserer bedre avkom ved å kombinere kromosomer til foreldre. Befolkningsstørrelsen er statisk, så rommet må opprettes for nyankomne. Så, noen individer dør og blir erstattet av nyankomne som til slutt skaper en ny generasjon når alle paringsmuligheter til den gamle befolkningen er uttømt. Det er å håpe at over påfølgende generasjoner vil bedre løsninger komme mens minst fit dør.
Hver ny generasjon har i gjennomsnitt flere bedre gener enn individet (løsningen) til tidligere generasjoner. Dermed har hver nye generasjon bedre delløsninger enn tidligere generasjoner. Når avkommet som er produsert ikke har noen signifikant forskjell fra avkom produsert av tidligere populasjoner, er populasjonen konvergert. Algoritmen sies å være konvergert til et sett med løsninger for problemet.
Operatører av genetiske algoritmer
Når den første generasjonen er opprettet, utvikler algoritmen generasjonen ved å bruke følgende operatører -
1) Utvalgsoperatør: Ideen er å gi preferanse til individer med gode kondisjonsscore og la dem overføre genene sine til påfølgende generasjoner.
2) Crossover-operatør: Dette representerer parring mellom individer. To individer velges ved å bruke utvalgsoperatoren og crossover-steder velges tilfeldig. Deretter utveksles genene på disse kryssstedene og skaper dermed et helt nytt individ (avkom). For eksempel -

3) Mutasjonsoperatør: Nøkkelideen er å sette inn tilfeldige gener i avkom for å opprettholde mangfoldet i befolkningen for å unngå for tidlig konvergens. For eksempel -
skanner skann java

Hele algoritmen kan oppsummeres som -
1) Randomly initialize populations p 2) Determine fitness of population 3) Until convergence repeat: a) Select parents from population b) Crossover and generate new population c) Perform mutation on new population d) Calculate fitness for new population>
Eksempel på problem og løsning ved bruk av genetiske algoritmer
Gitt en målstreng, er målet å produsere målstreng med utgangspunkt i en tilfeldig streng med samme lengde. I den følgende implementeringen lages følgende analogier -
- Tegn A-Z, a-z, 0-9 og andre spesialsymboler regnes som gener
- En streng generert av disse tegnene anses som kromosom/løsning/individ
Kondisjonspoeng er antall tegn som er forskjellig fra tegn i målstreng ved en bestemt indeks. Så individer med lavere kondisjonsverdi gis mer preferanse.
C++
hva er størrelsen på datamaskinens skjerm
// C++ program to create target string, starting from> // random string using Genetic Algorithm> > #include> using> namespace> std;> > // Number of individuals in each generation> #define POPULATION_SIZE 100> > // Valid Genes> const> string GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'>> 'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > // Target string to be generated> const> string TARGET =>'I love techcodeview.com'>;> > // Function to generate random numbers in given range> int> random_num(>int> start,>int> end)> {> >int> range = (end-start)+1;> >int> random_int = start+(>rand>()%range);> >return> random_int;> }> > // Create random genes for mutation> char> mutated_genes()> {> >int> len = GENES.size();> >int> r = random_num(0, len-1);> >return> GENES[r];> }> > // create chromosome or string of genes> string create_gnome()> {> >int> len = TARGET.size();> >string gnome =>''>;> >for>(>int> i = 0;i gnome += mutated_genes(); return gnome; } // Class representing individual in population class Individual { public: string chromosome; int fitness; Individual(string chromosome); Individual mate(Individual parent2); int cal_fitness(); }; Individual::Individual(string chromosome) { this->kromosom = kromosom; fitness = cal_fitness(); }; // Utfør paring og produsere nytt avkom Individual Individual::mate(Individual par2) { // kromosom for avkom string child_kromosom = ''; int len = kromosom.størrelse(); for(int i = 0;i { // tilfeldig sannsynlighet float p = random_num(0, 100)/100; // hvis sannsynligheten er mindre enn 0,45, sett inn gen // fra overordnet 1 if(p<0.45) child_chromosome += chromosome[i]; // if prob is between 0.45 and 0.90, insert // gene from parent 2 else if(p <0.90) child_chromosome += par2.chromosome[i]; // otherwise insert random gene(mutate), // for maintaining diversity else child_chromosome += mutated_genes(); } // create new Individual(offspring) using // generated chromosome for offspring return Individual(child_chromosome); }; // Calculate fitness score, it is the number of // characters in string which differ from target // string. int Individual::cal_fitness() { int len = TARGET.size(); int fitness = 0; for(int i = 0;i { if(chromosome[i] != TARGET[i]) fitness++; } return fitness; }; // Overloading bool operator<(const Individual &ind1, const Individual &ind2) { return ind1.fitness } // Driver code int main() { srand((unsigned)(time(0))); // current generation int generation = 0; vector population; bool found = false; // create initial population for(int i = 0;i { string gnome = create_gnome(); population.push_back(Individual(gnome)); } while(! found) { // sort the population in increasing order of fitness score sort(population.begin(), population.end()); // if the individual having lowest fitness score ie. // 0 then we know that we have reached to the target // and break the loop if(population[0].fitness <= 0) { found = true; break; } // Otherwise generate new offsprings for new generation vector new_generation; // Perform Elitism, that mean 10% of fittest population // goes to the next generation int s = (10*POPULATION_SIZE)/100; for(int i = 0;i new_generation.push_back(population[i]); // From 50% of fittest population, Individuals // will mate to produce offspring s = (90*POPULATION_SIZE)/100; for(int i = 0;i { int len = population.size(); int r = random_num(0, 50); Individual parent1 = population[r]; r = random_num(0, 50); Individual parent2 = population[r]; Individual offspring = parent1.mate(parent2); new_generation.push_back(offspring); } population = new_generation; cout<< 'Generation: ' << generation << ' '; cout<< 'String: '<< population[0].chromosome <<' '; cout<< 'Fitness: '<< population[0].fitness << '
'; generation++; } cout<< 'Generation: ' << generation << ' '; cout<< 'String: '<< population[0].chromosome <<' '; cout<< 'Fitness: '<< population[0].fitness << '
'; }> |
>
>
Java
df.loc
import> java.util.ArrayList;> import> java.util.Collections;> import> java.util.List;> import> java.util.Random;> > public> class> GeneticAlgorithm {> >// Number of individuals in each generation> >private> static> final> int> POPULATION_SIZE =>100>;> > >// Valid Genes> >private> static> final> String GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > >// Target string to be generated> >private> static> final> String TARGET =>'I love techcodeview.com'>;> > >// Function to generate random numbers in given range> >private> static> int> randomNum(>int> start,>int> end) {> >Random rand =>new> Random();> >return> rand.nextInt(end - start +>1>) + start;> >}> > >// Create random genes for mutation> >private> static> char> mutatedGenes() {> >int> len = GENES.length();> >int> r = randomNum(>0>, len ->1>);> >return> GENES.charAt(r);> >}> > >// Create chromosome or string of genes> >private> static> String createGnome() {> >int> len = TARGET.length();> >StringBuilder gnome =>new> StringBuilder();> >for> (>int> i =>0>; i gnome.append(mutatedGenes()); return gnome.toString(); } // Class representing individual in population private static class Individual implements Comparable { String chromosome; int fitness; Individual(String chromosome) { this.chromosome = chromosome; fitness = calFitness(); } // Perform mating and produce new offspring Individual mate(Individual par2) { StringBuilder childChromosome = new StringBuilder(); int len = chromosome.length(); for (int i = 0; i // random probability float p = randomNum(0, 100) / 100f; // if prob is less than 0.45, insert gene from parent 1 if (p <0.45) childChromosome.append(chromosome.charAt(i)); // if prob is between 0.45 and 0.90, insert gene from parent 2 else if (p <0.90) childChromosome.append(par2.chromosome.charAt(i)); // otherwise insert random gene(mutate), for maintaining diversity else childChromosome.append(mutatedGenes()); } // create new Individual(offspring) using generated chromosome for offspring return new Individual(childChromosome.toString()); } // Calculate fitness score, it is the number of characters in string which differ from target string private int calFitness() { int len = TARGET.length(); int fitness = 0; for (int i = 0; i if (chromosome.charAt(i) != TARGET.charAt(i)) fitness++; } return fitness; } @Override public int compareTo(Individual o) { return Integer.compare(this.fitness, o.fitness); } } // Driver code public static void main(String[] args) { // current generation int generation = 0; List population = new ArrayList(); boolean found = false; // create initial population for (int i = 0; i String gnome = createGnome(); population.add(new Individual(gnome)); } while (!found) { // sort the population in increasing order of fitness score Collections.sort(population); // if the individual having lowest fitness score i.e. 0 then we know that we have reached to the target // and break the loop if (population.get(0).fitness <= 0) { found = true; break; } // Otherwise generate new offsprings for new generation List newGeneration = new ArrayList(); // Perform Elitism, that mean 10% of fittest population goes to the next generation int s = (10 * POPULATION_SIZE) / 100; for (int i = 0; i newGeneration.add(population.get(i)); // From 50% of fittest population, Individuals will mate to produce offspring s = (90 * POPULATION_SIZE) / 100; for (int i = 0; i int len = population.size(); int r = randomNum(0, 50); Individual parent1 = population.get(r); r = randomNum(0, 50); Individual parent2 = population.get(r); Individual offspring = parent1.mate(parent2); newGeneration.add(offspring); } population = newGeneration; System.out.print('Generation: ' + generation + ' '); System.out.print('String: ' + population.get(0).chromosome + ' '); System.out.println('Fitness: ' + population.get(0).fitness); generation++; } System.out.print('Generation: ' + generation + ' '); System.out.print('String: ' + population.get(0).chromosome + ' '); System.out.println('Fitness: ' + population.get(0).fitness); } }> |
>
>
Python3
# Python3 program to create target string, starting from> # random string using Genetic Algorithm> > import> random> > # Number of individuals in each generation> POPULATION_SIZE>=> 100> > # Valid genes> GENES>=> '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP> QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'''> > # Target string to be generated> TARGET>=> 'I love techcodeview.com'> > class> Individual(>object>):> >'''> >Class representing individual in population> >'''> >def> __init__(>self>, chromosome):> >self>.chromosome>=> chromosome> >self>.fitness>=> self>.cal_fitness()> > >@classmethod> >def> mutated_genes(>self>):> >'''> >create random genes for mutation> >'''> >global> GENES> >gene>=> random.choice(GENES)> >return> gene> > >@classmethod> >def> create_gnome(>self>):> >'''> >create chromosome or string of genes> >'''> >global> TARGET> >gnome_len>=> len>(TARGET)> >return> [>self>.mutated_genes()>for> _>in> range>(gnome_len)]> > >def> mate(>self>, par2):> >'''> >Perform mating and produce new offspring> >'''> > ># chromosome for offspring> >child_chromosome>=> []> >for> gp1, gp2>in> zip>(>self>.chromosome, par2.chromosome):> > ># random probability> >prob>=> random.random()> > ># if prob is less than 0.45, insert gene> ># from parent 1> >if> prob <>0.45>:> >child_chromosome.append(gp1)> > ># if prob is between 0.45 and 0.90, insert> ># gene from parent 2> >elif> prob <>0.90>:> >child_chromosome.append(gp2)> > ># otherwise insert random gene(mutate),> ># for maintaining diversity> >else>:> >child_chromosome.append(>self>.mutated_genes())> > ># create new Individual(offspring) using> ># generated chromosome for offspring> >return> Individual(child_chromosome)> > >def> cal_fitness(>self>):> >'''> >Calculate fitness score, it is the number of> >characters in string which differ from target> >string.> >'''> >global> TARGET> >fitness>=> 0> >for> gs, gt>in> zip>(>self>.chromosome, TARGET):> >if> gs !>=> gt: fitness>+>=> 1> >return> fitness> > # Driver code> def> main():> >global> POPULATION_SIZE> > >#current generation> >generation>=> 1> > >found>=> False> >population>=> []> > ># create initial population> >for> _>in> range>(POPULATION_SIZE):> >gnome>=> Individual.create_gnome()> >population.append(Individual(gnome))> > >while> not> found:> > ># sort the population in increasing order of fitness score> >population>=> sorted>(population, key>=> lambda> x:x.fitness)> > ># if the individual having lowest fitness score ie.> ># 0 then we know that we have reached to the target> ># and break the loop> >if> population[>0>].fitness <>=> 0>:> >found>=> True> >break> > ># Otherwise generate new offsprings for new generation> >new_generation>=> []> > ># Perform Elitism, that mean 10% of fittest population> ># goes to the next generation> >s>=> int>((>10>*>POPULATION_SIZE)>/>100>)> >new_generation.extend(population[:s])> > ># From 50% of fittest population, Individuals> ># will mate to produce offspring> >s>=> int>((>90>*>POPULATION_SIZE)>/>100>)> >for> _>in> range>(s):> >parent1>=> random.choice(population[:>50>])> >parent2>=> random.choice(population[:>50>])> >child>=> parent1.mate(parent2)> >new_generation.append(child)> > >population>=> new_generation> > >print>(>'Generation: {} String: {} Fitness: {}'>.> >format>(generation,> >''.join(population[>0>].chromosome),> >population[>0>].fitness))> > >generation>+>=> 1> > > >print>(>'Generation: {} String: {} Fitness: {}'>.> >format>(generation,> >''.join(population[>0>].chromosome),> >population[>0>].fitness))> > if> __name__>=>=> '__main__'>:> >main()> |
>
>
C#
using> System;> using> System.Collections.Generic;> using> System.Linq;> > public> class> GeneticAlgorithm> {> >// Number of individuals in each generation> >private> const> int> POPULATION_SIZE = 100;> > >// Valid Genes> >private> const> string> GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'> +> >'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > >// Target string to be generated> >private> const> string> TARGET =>'I love techcodeview.com'>;> > >private> static> readonly> Random random =>new> Random();> > >// Function to generate random numbers in given range> >private> static> int> RandomNum(>int> start,>int> end)> >{> >return> random.Next(start, end + 1);> >}> > >// Create random genes for mutation> >private> static> char> MutatedGenes()> >{> >int> len = GENES.Length;> >int> r = RandomNum(0, len - 1);> >return> GENES[r];> >}> > >// Create chromosome or string of genes> >private> static> string> CreateGnome()> >{> >int> len = TARGET.Length;> >char>[] gnome =>new> char>[len];> >for> (>int> i = 0; i { gnome[i] = MutatedGenes(); } return new string(gnome); } // Class representing individual in population private class Individual { public string Chromosome { get; } public int Fitness { get; } public Individual(string chromosome) { Chromosome = chromosome; Fitness = CalculateFitness(); } // Calculate fitness score, it is the number of // characters in string which differ from target string. private int CalculateFitness() { return Chromosome.Zip(TARGET, (a, b) =>a == b ? 0 : 1).Sum(); } // Utfør paring og produsere nytt avkom offentlig Individual Mate(Individual parent2) { char[] childChromosome = new char[Chromosome.Length]; for (int i = 0; i { dobbel p = random.NextDouble(); if (s<0.45) childChromosome[i] = Chromosome[i]; else if (p <0.90) childChromosome[i] = parent2.Chromosome[i]; else childChromosome[i] = MutatedGenes(); } return new Individual(new string(childChromosome)); } } // Overloading private class FitnessComparer : IComparer { public int Compare(Individual ind1, Individual ind2) { return ind1.Fitness.CompareTo(ind2.Fitness); } } // Driver code public static void Main() { // current generation int generation = 0; List population = new List(); bool found = false; // create initial population for (int i = 0; i { string gnome = CreateGnome(); population.Add(new Individual(gnome)); } while (!found) { // sort the population in increasing order of fitness score population.Sort(new FitnessComparer()); // if the individual having lowest fitness score ie. // 0 then we know that we have reached the target // and break the loop if (population[0].Fitness == 0) { found = true; break; } // Otherwise generate new offsprings for new generation List newGeneration = new List(); // Perform Elitism, that means 10% of fittest population // goes to the next generation int s = (10 * POPULATION_SIZE) / 100; for (int i = 0; i newGeneration.Add(population[i]); // From 50% of fittest population, Individuals // will mate to produce offspring s = (90 * POPULATION_SIZE) / 100; for (int i = 0; i { int len = population.Count; int r = RandomNum(0, 50); Individual parent1 = population[r]; r = RandomNum(0, 50); Individual parent2 = population[r]; Individual offspring = parent1.Mate(parent2); newGeneration.Add(offspring); } population = newGeneration; Console.WriteLine('Generation: ' + generation + ' ' + 'String: ' + population[0].Chromosome + ' ' + 'Fitness: ' + population[0].Fitness); generation++; } Console.WriteLine('Generation: ' + generation + ' ' + 'String: ' + population[0].Chromosome + ' ' + 'Fitness: ' + population[0].Fitness); } }> |
>
hva er skjermstørrelsen min
>
Javascript
// Number of individuals in each generation> const POPULATION_SIZE = 100;> > // Valid Genes> const GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'> +> >'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > // Target string to be generated> const TARGET =>'I love techcodeview.com'>;> > // Function to generate random numbers in given range> function> RandomNum(start, end) {> >return> Math.floor(Math.random() * (end - start + 1)) + start;> }> > // Create random genes for mutation> function> MutatedGenes() {> >let len = GENES.length;> >let r = RandomNum(0, len - 1);> >return> GENES.charAt(r);> }> > // Create chromosome or string of genes> function> CreateGnome() {> >let len = TARGET.length;> >let gnome =>''>;> >for> (let i = 0; i gnome += MutatedGenes(); } return gnome; } // Class representing individual in population class Individual { constructor(chromosome) { this.Chromosome = chromosome; this.Fitness = this.CalculateFitness(); } // Calculate fitness score, it is the number of // characters in string which differ from target string. CalculateFitness() { let fitness = 0; for (let i = 0; i |
>Produksjon: Generation: 1 String: tO{'-?=jH[k8=B4]Oe@} Fitness: 18 Generation: 2 String: tO{'-?=jH[k8=B4]Oe@} Fitness: 18 Generation: 3 String: .#lRWf9k_Ifslw #O$k_ Fitness: 17 Generation: 4 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16 Generation: 5 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16 Generation: 6 String: A#ldW) #lIkslw cVek) Fitness: 14 Generation: 7 String: A#ldW) #lIkslw cVek) Fitness: 14 Generation: 8 String: (, o x _x%Rs=, 6Peek3 Fitness: 13 . . . Generation: 29 String: I lope Geeks#o, Geeks Fitness: 3 Generation: 30 String: I loMe GeeksfoBGeeks Fitness: 2 Generation: 31 String: I love Geeksfo0Geeks Fitness: 1 Generation: 32 String: I love Geeksfo0Geeks Fitness: 1 Generation: 33 String: I love Geeksfo0Geeks Fitness: 1 Generation: 34 String: I love techcodeview.com Fitness: 0>Merk: Hver gangs algoritme starter med tilfeldige strenger, så utdata kan variere
Som vi kan se fra utdataene, sitter algoritmen vår noen ganger fast på en lokal optimal løsning, dette kan forbedres ytterligere ved å oppdatere beregningsalgoritmen for fitnesspoeng eller ved å justere mutasjons- og crossover-operatører.
Hvorfor bruke genetiske algoritmer
- De er robuste
- Gi optimalisering over stor plasstilstand.
- I motsetning til tradisjonell AI, bryter de ikke ved små endringer i input eller tilstedeværelse av støy
Anvendelse av genetiske algoritmer
Genetiske algoritmer har mange applikasjoner, noen av dem er -
- Tilbakevendende nevrale nettverk
- Mutasjonstesting
- Kodebrudd
- Filtrering og signalbehandling
- Lære fuzzy regelgrunnlag etc
k-nn algoritme