logo

Lengste påfølgende sekvens i binært tre

Prøv det på GfG Practice Lengste påfølgende sekvens i binært tre' title= #practiceLinkDiv { display: ingen !viktig; }

Gitt et binært tre, finn lengden på den lengste banen som består av noder med påfølgende verdier i økende rekkefølge. Hver node betraktes som en bane med lengde 1.
Eksempler:  
 

In below diagram binary tree with longest consecutive path(LCP) are shown :

Anbefalt praksis Lengste påfølgende sekvens i binært tre Prøv det!

Vi kan løse problemet ovenfor rekursivt. Ved hver node trenger vi informasjon om dens overordnede node hvis gjeldende node har verdi én mer enn dens overordnede node, så lager den en påfølgende bane ved hver node, vi vil sammenligne nodens verdi med dens overordnede verdi og oppdatere den lengste påfølgende banen tilsvarende. 



For å få verdien til overordnet node vil vi sende (node_verdi + 1) som et argument til den rekursive metoden og sammenligne nodeverdien med denne argumentverdien hvis tilfredsstiller oppdater gjeldende lengde på påfølgende bane ellers reinitialisere gjeldende banelengde med 1. 

Se koden nedenfor for bedre forståelse: 

C++
// C/C++ program to find longest consecutive // sequence in binary tree #include    using namespace std; /* A binary tree node has data pointer to left  child and a pointer to right child */ struct Node {  int data;  Node *left *right; }; // A utility function to create a node Node* newNode(int data) {  Node* temp = new Node;  temp->data = data;  temp->left = temp->right = NULL;  return temp; } // Utility method to return length of longest // consecutive sequence of tree void longestConsecutiveUtil(Node* root int curLength  int expected int& res) {  if (root == NULL)  return;  // if root data has one more than its parent  // then increase current length  if (root->data == expected)  curLength++;  else  curLength = 1;  // update the maximum by current length  res = max(res curLength);  // recursively call left and right subtree with  // expected value 1 more than root data  longestConsecutiveUtil(root->left curLength  root->data + 1 res);  longestConsecutiveUtil(root->right curLength  root->data + 1 res); } // method returns length of longest consecutive // sequence rooted at node root int longestConsecutive(Node* root) {  if (root == NULL)  return 0;  int res = 0;  // call utility method with current length 0  longestConsecutiveUtil(root 0 root->data res);  return res; } // Driver code to test above methods int main() {  Node* root = newNode(6);  root->right = newNode(9);  root->right->left = newNode(7);  root->right->right = newNode(10);  root->right->right->right = newNode(11);  printf('%dn' longestConsecutive(root));  return 0; } 
Java
// Java program to find longest consecutive  // sequence in binary tree class Node {  int data;  Node left right;  Node(int item)  {  data = item;  left = right = null;  } } class Result  {  int res = 0; } class BinaryTree {  Node root;  // method returns length of longest consecutive   // sequence rooted at node root   int longestConsecutive(Node root)  {  if (root == null)  return 0;  Result res = new Result();    // call utility method with current length 0   longestConsecutiveUtil(root 0 root.data res);    return res.res;  }  // Utility method to return length of longest   // consecutive sequence of tree   private void longestConsecutiveUtil(Node root int curlength   int expected Result res)  {  if (root == null)  return;  // if root data has one more than its parent   // then increase current length   if (root.data == expected)  curlength++;  else  curlength = 1;  // update the maximum by current length   res.res = Math.max(res.res curlength);  // recursively call left and right subtree with   // expected value 1 more than root data   longestConsecutiveUtil(root.left curlength root.data + 1 res);  longestConsecutiveUtil(root.right curlength root.data + 1 res);  }  // Driver code  public static void main(String args[])   {  BinaryTree tree = new BinaryTree();  tree.root = new Node(6);  tree.root.right = new Node(9);  tree.root.right.left = new Node(7);  tree.root.right.right = new Node(10);  tree.root.right.right.right = new Node(11);  System.out.println(tree.longestConsecutive(tree.root));  } } // This code is contributed by shubham96301 
Python3
# Python3 program to find longest consecutive  # sequence in binary tree  # A utility class to create a node  class newNode: def __init__(self data): self.data = data self.left = self.right = None # Utility method to return length of  # longest consecutive sequence of tree  def longestConsecutiveUtil(root curLength expected res): if (root == None): return # if root data has one more than its  # parent then increase current length  if (root.data == expected): curLength += 1 else: curLength = 1 # update the maximum by current length  res[0] = max(res[0] curLength) # recursively call left and right subtree  # with expected value 1 more than root data  longestConsecutiveUtil(root.left curLength root.data + 1 res) longestConsecutiveUtil(root.right curLength root.data + 1 res) # method returns length of longest consecutive  # sequence rooted at node root  def longestConsecutive(root): if (root == None): return 0 res = [0] # call utility method with current length 0  longestConsecutiveUtil(root 0 root.data res) return res[0] # Driver Code if __name__ == '__main__': root = newNode(6) root.right = newNode(9) root.right.left = newNode(7) root.right.right = newNode(10) root.right.right.right = newNode(11) print(longestConsecutive(root)) # This code is contributed by PranchalK 
C#
// C# program to find longest consecutive  // sequence in binary tree  using System;  class Node  {   public int data;   public Node left right;   public Node(int item)   {   data = item;   left = right = null;   }  }  class Result  {   public int res = 0;  }  class GFG  {   Node root;   // method returns length of longest consecutive   // sequence rooted at node root   int longestConsecutive(Node root)   {   if (root == null)   return 0;   Result res = new Result();     // call utility method with current length 0   longestConsecutiveUtil(root 0 root.data res);     return res.res;   }   // Utility method to return length of longest   // consecutive sequence of tree   private void longestConsecutiveUtil(Node root int curlength   int expected Result res)   {   if (root == null)   return;   // if root data has one more than its parent   // then increase current length   if (root.data == expected)   curlength++;   else  curlength = 1;   // update the maximum by current length   res.res = Math.Max(res.res curlength);   // recursively call left and right subtree with   // expected value 1 more than root data   longestConsecutiveUtil(root.left curlength   root.data + 1 res);   longestConsecutiveUtil(root.right curlength   root.data + 1 res);   }   // Driver code   public static void Main(String []args)   {   GFG tree = new GFG();   tree.root = new Node(6);   tree.root.right = new Node(9);   tree.root.right.left = new Node(7);   tree.root.right.right = new Node(10);   tree.root.right.right.right = new Node(11);   Console.WriteLine(tree.longestConsecutive(tree.root));   }  }  // This code is contributed by 29AjayKumar 
JavaScript
<script> // JavaScript program to find longest consecutive  // sequence in binary tree class Node {  constructor(item)  {  this.data=item;  this.left = this.right = null;  } } let res = 0; let root; function longestConsecutive(root) {  if (root == null)  return 0;    res=[0];     // call utility method with current length 0   longestConsecutiveUtil(root 0 root.data res);    return res[0]; }  // Utility method to return length of longest   // consecutive sequence of tree  function longestConsecutiveUtil(rootcurlength expectedres) {  if (root == null)  return;    // if root data has one more than its parent   // then increase current length   if (root.data == expected)  curlength++;  else  curlength = 1;    // update the maximum by current length   res[0] = Math.max(res[0] curlength);    // recursively call left and right subtree with   // expected value 1 more than root data   longestConsecutiveUtil(root.left curlength   root.data + 1 res);  longestConsecutiveUtil(root.right curlength   root.data + 1 res); } // Driver code root = new Node(6); root.right = new Node(9); root.right.left = new Node(7); root.right.right = new Node(10); root.right.right.right = new Node(11); document.write(longestConsecutive(root)); // This code is contributed by rag2127 </script> 

Produksjon
3

Tidskompleksitet: O(N) hvor N er antall noder i et gitt binært tre.
Hjelpeområde: O(log(N))
Også diskutert på linken nedenfor: 
Maksimal påfølgende økende banelengde i binært tre