Slå sammen sortering er en sorteringsalgoritme som følger splitt og hersk nærme seg. Det fungerer ved å rekursivt dele innmatrisen i mindre undermatriser og sortere disse undermatrisene og deretter slå dem sammen igjen for å oppnå den sorterte matrisen.
Enkelt sagt kan vi si at prosessen med slå sammen sortering er å dele matrisen i to halvdeler, sortere hver halvdel og deretter slå de sorterte halvdelene sammen igjen. Denne prosessen gjentas til hele matrisen er sortert.

Slå sammen sorteringsalgoritme
Hvordan fungerer Merge Sort?
Merge sort er en populær sorteringsalgoritme kjent for sin effektivitet og stabilitet. Den følger splitt og hersk tilnærming til å sortere en gitt rekke elementer.
Her er en trinnvis forklaring på hvordan sammenslåingssortering fungerer:
- Dele opp: Del listen eller matrisen rekursivt i to halvdeler til den ikke lenger kan deles.
- Erobre: Hver undermatrise sorteres individuelt ved hjelp av flettesorteringsalgoritmen.
- Slå sammen: De sorterte undermatrisene slås sammen igjen i sortert rekkefølge. Prosessen fortsetter til alle elementene fra begge undermatrisene er slått sammen.
Illustrasjon av Merge Sort:
La oss sortere matrisen eller listen [38, 27, 43, 10] ved å bruke Merge Sort
Anbefalt praksis Prøv det!La oss se på hvordan eksemplet ovenfor fungerer:
Dele opp:
- [38, 27, 43, 10] er delt inn i [38, 27 ] og [43, 10] .
- [38, 27] er delt inn i [38] og [27] .
- [43, 10] er delt inn i [43] og [10] .
Erobre:
- [38] er allerede sortert.
- [27] er allerede sortert.
- [43] er allerede sortert.
- [10] er allerede sortert.
Slå sammen:
- Slå sammen [38] og [27] å få [27, 38] .
- Slå sammen [43] og [10] å få [10.43] .
- Slå sammen [27, 38] og [10.43] for å få den endelige sorterte listen [10, 27, 38, 43]
Derfor er den sorterte listen [10, 27, 38, 43] .
Implementering av Merge Sort:
C++ // C++ program for Merge Sort #include using namespace std; // Merges two subarrays of array[]. // First subarray is arr[begin..mid] // Second subarray is arr[mid+1..end] void merge(int array[], int const left, int const mid, int const right) { int const subArrayOne = mid - left + 1; int const subArrayTwo = right - mid; // Create temp arrays auto *leftArray = new int[subArrayOne], *rightArray = new int[subArrayTwo]; // Copy data to temp arrays leftArray[] and rightArray[] for (auto i = 0; i < subArrayOne; i++) leftArray[i] = array[left + i]; for (auto j = 0; j < subArrayTwo; j++) rightArray[j] = array[mid + 1 + j]; auto indexOfSubArrayOne = 0, indexOfSubArrayTwo = 0; int indexOfMergedArray = left; // Merge the temp arrays back into array[left..right] while (indexOfSubArrayOne < subArrayOne && indexOfSubArrayTwo < subArrayTwo) { if (leftArray[indexOfSubArrayOne] <= rightArray[indexOfSubArrayTwo]) { array[indexOfMergedArray] = leftArray[indexOfSubArrayOne]; indexOfSubArrayOne++; } else { array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo]; indexOfSubArrayTwo++; } indexOfMergedArray++; } // Copy the remaining elements of // left[], if there are any while (indexOfSubArrayOne < subArrayOne) { array[indexOfMergedArray] = leftArray[indexOfSubArrayOne]; indexOfSubArrayOne++; indexOfMergedArray++; } // Copy the remaining elements of // right[], if there are any while (indexOfSubArrayTwo < subArrayTwo) { array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo]; indexOfSubArrayTwo++; indexOfMergedArray++; } delete[] leftArray; delete[] rightArray; } // begin is for left index and end is right index // of the sub-array of arr to be sorted void mergeSort(int array[], int const begin, int const end) { if (begin>= slutt) returnere; int mid = begynne + (slutt - begynne) / 2; mergeSort(array, start, mid); mergeSort(array, mid + 1, end); flette (matrise, begynne, midt, slutt); } // UTILITY FUNCTIONS // Funksjon for å skrive ut en matrise void printArray(int A[], int size) { for (int i = 0; i< size; i++) cout << A[i] << ' '; cout << endl; } // Driver code int main() { int arr[] = { 12, 11, 13, 5, 6, 7 }; int arr_size = sizeof(arr) / sizeof(arr[0]); cout << 'Given array is
'; printArray(arr, arr_size); mergeSort(arr, 0, arr_size - 1); cout << '
Sorted array is
'; printArray(arr, arr_size); return 0; } // This code is contributed by Mayank Tyagi // This code was revised by Joshua Estes>
C // C program for Merge Sort #include #include // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; // Create temp arrays int L[n1], R[n2]; // Copy data to temp arrays L[] and R[] for (i = 0; i < n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; // Merge the temp arrays back into arr[l..r i = 0; j = 0; k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // Copy the remaining elements of L[], // if there are any while (i < n1) { arr[k] = L[i]; i++; k++; } // Copy the remaining elements of R[], // if there are any while (j < n2) { arr[k] = R[j]; j++; k++; } } // l is for left index and r is right index of the // sub-array of arr to be sorted void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; // Sort first and second halves mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } // Function to print an array void printArray(int A[], int size) { int i; for (i = 0; i < size; i++) printf('%d ', A[i]); printf('
'); } // Driver code int main() { int arr[] = { 12, 11, 13, 5, 6, 7 }; int arr_size = sizeof(arr) / sizeof(arr[0]); printf('Given array is
'); printArray(arr, arr_size); mergeSort(arr, 0, arr_size - 1); printf('
Sorted array is
'); printArray(arr, arr_size); return 0; }>
Java // Java program for Merge Sort import java.io.*; class MergeSort { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; // Create temp arrays int L[] = new int[n1]; int R[] = new int[n2]; // Copy data to temp arrays for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; // Merge the temp arrays // Initial indices of first and second subarrays int i = 0, j = 0; // Initial index of merged subarray array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // Copy remaining elements of L[] if any while (i < n1) { arr[k] = L[i]; i++; k++; } // Copy remaining elements of R[] if any while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = l + (r - l) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } // A utility function to print array of size n static void printArray(int arr[]) { int n = arr.length; for (int i = 0; i < n; ++i) System.out.print(arr[i] + ' '); System.out.println(); } // Driver code public static void main(String args[]) { int arr[] = { 12, 11, 13, 5, 6, 7 }; System.out.println('Given array is'); printArray(arr); MergeSort ob = new MergeSort(); ob.sort(arr, 0, arr.length - 1); System.out.println('
Sorted array is'); printArray(arr); } } /* This code is contributed by Rajat Mishra */>
Python # Merges two subarrays of array[]. # First subarray is arr[left..mid] # Second subarray is arr[mid+1..right] def merge(array, left, mid, right): subArrayOne = mid - left + 1 subArrayTwo = right - mid # Create temp arrays leftArray = [0] * subArrayOne rightArray = [0] * subArrayTwo # Copy data to temp arrays leftArray[] and rightArray[] for i in range(subArrayOne): leftArray[i] = array[left + i] for j in range(subArrayTwo): rightArray[j] = array[mid + 1 + j] indexOfSubArrayOne = 0 # Initial index of first sub-array indexOfSubArrayTwo = 0 # Initial index of second sub-array indexOfMergedArray = left # Initial index of merged array # Merge the temp arrays back into array[left..right] while indexOfSubArrayOne < subArrayOne and indexOfSubArrayTwo < subArrayTwo: if leftArray[indexOfSubArrayOne] <= rightArray[indexOfSubArrayTwo]: array[indexOfMergedArray] = leftArray[indexOfSubArrayOne] indexOfSubArrayOne += 1 else: array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo] indexOfSubArrayTwo += 1 indexOfMergedArray += 1 # Copy the remaining elements of left[], if any while indexOfSubArrayOne < subArrayOne: array[indexOfMergedArray] = leftArray[indexOfSubArrayOne] indexOfSubArrayOne += 1 indexOfMergedArray += 1 # Copy the remaining elements of right[], if any while indexOfSubArrayTwo < subArrayTwo: array[indexOfMergedArray] = rightArray[indexOfSubArrayTwo] indexOfSubArrayTwo += 1 indexOfMergedArray += 1 # begin is for left index and end is right index # of the sub-array of arr to be sorted def mergeSort(array, begin, end): if begin>= end: return mid = begin + (end - begin) // 2 mergeSort(array, begin, mid) mergeSort(array, mid + 1, end) merge(array, begin, mid, end) # Funksjon for å skrive ut en matrise def printArray(array, size): for i in range(size): print(array[i], end=' ') print() # Driverkode hvis __name__ == '__main__': arr = [12 , 11, 13, 5, 6, 7] arr_size = len(arr) print('Gitt array er') printArray(arr, arr_size) mergeSort(arr, 0, arr_size - 1) print('
Sortert array er') printArray(arr, arr_size)>
C# // C# program for Merge Sort using System; class MergeSort { // Merges two subarrays of []arr. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int[] arr, int l, int m, int r) { // Find sizes of two // subarrays to be merged int n1 = m - l + 1; int n2 = r - m; // Create temp arrays int[] L = new int[n1]; int[] R = new int[n2]; int i, j; // Copy data to temp arrays for (i = 0; i < n1; ++i) L[i] = arr[l + i]; for (j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; // Merge the temp arrays // Initial indexes of first // and second subarrays i = 0; j = 0; // Initial index of merged // subarray array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // Copy remaining elements // of L[] if any while (i < n1) { arr[k] = L[i]; i++; k++; } // Copy remaining elements // of R[] if any while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that // sorts arr[l..r] using // merge() void sort(int[] arr, int l, int r) { if (l < r) { // Find the middle point int m = l + (r - l) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } // A utility function to // print array of size n static void printArray(int[] arr) { int n = arr.Length; for (int i = 0; i < n; ++i) Console.Write(arr[i] + ' '); Console.WriteLine(); } // Driver code public static void Main(String[] args) { int[] arr = { 12, 11, 13, 5, 6, 7 }; Console.WriteLine('Given array is'); printArray(arr); MergeSort ob = new MergeSort(); ob.sort(arr, 0, arr.Length - 1); Console.WriteLine('
Sorted array is'); printArray(arr); } } // This code is contributed by Princi Singh>
Javascript // JavaScript program for Merge Sort // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] function merge(arr, l, m, r) { var n1 = m - l + 1; var n2 = r - m; // Create temp arrays var L = new Array(n1); var R = new Array(n2); // Copy data to temp arrays L[] and R[] for (var i = 0; i < n1; i++) L[i] = arr[l + i]; for (var j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; // Merge the temp arrays back into arr[l..r] // Initial index of first subarray var i = 0; // Initial index of second subarray var j = 0; // Initial index of merged subarray var k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // Copy the remaining elements of // L[], if there are any while (i < n1) { arr[k] = L[i]; i++; k++; } // Copy the remaining elements of // R[], if there are any while (j < n2) { arr[k] = R[j]; j++; k++; } } // l is for left index and r is // right index of the sub-array // of arr to be sorted function mergeSort(arr,l, r){ if(l>=r){ return; } var m =l+ parseInt((r-l)/2); slå sammenSort(arr,l,m); mergeSort(arr,m+1,r); slå sammen(arr,l,m,r); } // Funksjon for å skrive ut en matrisefunksjon printArray( A, størrelse) { for (var i = 0; i< size; i++) console.log( A[i] + ' '); } var arr = [ 12, 11, 13, 5, 6, 7 ]; var arr_size = arr.length; console.log( 'Given array is '); printArray(arr, arr_size); mergeSort(arr, 0, arr_size - 1); console.log( 'Sorted array is '); printArray(arr, arr_size); // This code is contributed by SoumikMondal>
PHP /* PHP recursive program for Merge Sort */ // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] function merge(&$arr, $l, $m, $r) { $n1 = $m - $l + 1; $n2 = $r - $m; // Create temp arrays $L = array(); $R = array(); // Copy data to temp arrays L[] and R[] for ($i = 0; $i < $n1; $i++) $L[$i] = $arr[$l + $i]; for ($j = 0; $j < $n2; $j++) $R[$j] = $arr[$m + 1 + $j]; // Merge the temp arrays back into arr[l..r] $i = 0; $j = 0; $k = $l; while ($i < $n1 && $j < $n2) { if ($L[$i] <= $R[$j]) { $arr[$k] = $L[$i]; $i++; } else { $arr[$k] = $R[$j]; $j++; } $k++; } // Copy the remaining elements of L[], // if there are any while ($i < $n1) { $arr[$k] = $L[$i]; $i++; $k++; } // Copy the remaining elements of R[], // if there are any while ($j < $n2) { $arr[$k] = $R[$j]; $j++; $k++; } } // l is for left index and r is right index of the // sub-array of arr to be sorted function mergeSort(&$arr, $l, $r) { if ($l < $r) { $m = $l + (int)(($r - $l) / 2); // Sort first and second halves mergeSort($arr, $l, $m); mergeSort($arr, $m + 1, $r); merge($arr, $l, $m, $r); } } // Function to print an array function printArray($A, $size) { for ($i = 0; $i < $size; $i++) echo $A[$i].' '; echo '
'; } // Driver code $arr = array(12, 11, 13, 5, 6, 7); $arr_size = sizeof($arr); echo 'Given array is
'; printArray($arr, $arr_size); mergeSort($arr, 0, $arr_size - 1); echo '
Sorted array is
'; printArray($arr, $arr_size); return 0; //This code is contributed by Susobhan Akhuli ?>>
Produksjon
Given array is 12 11 13 5 6 7 Sorted array is 5 6 7 11 12 13>
Kompleksitetsanalyse av sammenslåingssortering:
Tidskompleksitet:
- Beste tilfelle: O(n log n), Når matrisen allerede er sortert eller nesten sortert.
- Gjennomsnittlig sak: O(n log n), Når matrisen er tilfeldig ordnet.
- Worst Case: O(n log n), Når matrisen er sortert i omvendt rekkefølge.
Plass kompleksitet: O(n), Det kreves ekstra plass for den midlertidige matrisen som brukes under sammenslåing.
Fordeler med Merge Sort:
- Stabilitet : Merge sort er en stabil sorteringsalgoritme, som betyr at den opprettholder den relative rekkefølgen av like elementer i inndatamatrisen.
- Garantert dårligst mulig ytelse: Merge sort har en verste fall tidskompleksitet på O(N logN) , noe som betyr at den fungerer godt selv på store datasett.
- Enkel å implementere: Del-og-hersk-tilnærmingen er grei.
Ulempen med Merge Sort:
- Plass kompleksitet: Slå sammen sortering krever ekstra minne for å lagre de sammenslåtte undermatrisene under sorteringsprosessen.
- Ikke på plass: Slå sammen sortering er ikke en sorteringsalgoritme på stedet, noe som betyr at det krever ekstra minne for å lagre de sorterte dataene. Dette kan være en ulempe i applikasjoner der minnebruk er et problem.
Programmer for sammenslåingssortering:
- Sortering av store datasett
- Ekstern sortering (når datasettet er for stort til å passe i minnet)
- Inversjonstelling (teller antall inversjoner i en matrise)
- Finne medianen til en matrise
Hurtigkoblinger:
- Nylige artikler om Merge Sort
- Toppsortering av intervjuspørsmål og -problemer
- Øv på problemer med sorteringsalgoritme
- Quiz om Merge Sort