logo

NumPy i Python | Sett 2 (avansert)

NumPy i Python | Sett 1 (introduksjon) Denne artikkelen diskuterer noen flere og litt avanserte metoder tilgjengelig i NumPy.
    Stabling:Flere matriser kan stables sammen langs forskjellige akser.
      np.vstack:For å stable arrays langs vertikal akse. np.hstack:For å stable arrays langs horisontal akse. np.column_stack:For å stable 1-D-matriser som kolonner i 2-D-matriser. np.concatenate:For å stable arrays langs spesifisert akse (akse sendes som argument).
    Python
    import numpy as np a = np.array([[1 2] [3 4]]) b = np.array([[5 6] [7 8]]) # vertical stacking print('Vertical stacking:n' np.vstack((a b))) # horizontal stacking print('nHorizontal stacking:n' np.hstack((a b))) c = [5 6] # stacking columns print('nColumn stacking:n' np.column_stack((a c))) # concatenation method  print('nConcatenating to 2nd axis:n' np.concatenate((a b) 1)) 
    Output:
    Vertical stacking: [[1 2] [3 4] [5 6] [7 8]] Horizontal stacking: [[1 2 5 6] [3 4 7 8]] Column stacking: [[1 2 5] [3 4 6]] Concatenating to 2nd axis: [[1 2 5 6] [3 4 7 8]]
    Splitting:For splitting har vi disse funksjonene:
      np.hsplit:Del array langs horisontal akse. np.vsplit:Del array langs vertikal akse. np.array_split:Del array langs spesifisert akse.
    Python
    import numpy as np a = np.array([[1 3 5 7 9 11] [2 4 6 8 10 12]]) # horizontal splitting print('Splitting along horizontal axis into 2 parts:n' np.hsplit(a 2)) # vertical splitting print('nSplitting along vertical axis into 2 parts:n' np.vsplit(a 2)) 
    Output:
    Splitting along horizontal axis into 2 parts: [array([[1 3 5] [2 4 6]]) array([[ 7 9 11] [ 8 10 12]])] Splitting along vertical axis into 2 parts: [array([[ 1 3 5 7 9 11]]) array([[ 2 4 6 8 10 12]])]
    Kringkasting:Begrepet kringkasting beskriver hvordan NumPy behandler matriser med forskjellige former under aritmetiske operasjoner. Med visse begrensninger "kringkastes" den mindre matrisen over den større matrisen slik at de har kompatible former. Kringkasting gir en måte å vektorisere array-operasjoner slik at looping skjer i C i stedet for Python. Det gjør dette uten å lage unødvendige kopier av data og fører vanligvis til effektive algoritmeimplementeringer. Det er også tilfeller der kringkasting er en dårlig idé fordi det fører til ineffektiv bruk av minne som bremser beregningen. NumPy-operasjoner gjøres vanligvis element-for-element som krever at to arrays har nøyaktig samme form. Numpys kringkastingsregel slapper av denne begrensningen når arrayenes former møter visse begrensninger. Kringkastingsregelen: For å kringkaste må størrelsen på de etterfølgende aksene for begge matrisene i en operasjon enten være like store, eller en av dem må være en . Let us see some examples:
    A(2-D array): 4 x 3 B(1-D array): 3 Result : 4 x 3 
    A(4-D array): 7 x 1 x 6 x 1 B(3-D array): 3 x 1 x 5 Result : 7 x 3 x 6 x 5 
    But this would be a mismatch:
    A: 4 x 3 B: 4 
    The simplest broadcasting example occurs when an array and a scalar value are combined in an operation. Consider the example given below: Python
    import numpy as np a = np.array([1.0 2.0 3.0]) # Example 1 b = 2.0 print(a * b) # Example 2 c = [2.0 2.0 2.0] print(a * c) 
    Output:
    [ 2. 4. 6.] [ 2. 4. 6.]
    We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b as shown in above figure are simply copies of the original scalar. Although the stretching analogy is only conceptual. Numpy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible. Because Example 1 moves less memory (b is a scalar not an array) around during the multiplication it is about 10% faster than Example 2 using the standard numpy on Windows 2000 with one million element arrays! The figure below makes the concept more clear: NumPy i Python | Sett 2 (avansert) In above example the scalar b is stretched to become an array of with the same shape as a so the shapes are compatible for element-by-element multiplication. Now let us see an example where both arrays get stretched. Python
    import numpy as np a = np.array([0.0 10.0 20.0 30.0]) b = np.array([0.0 1.0 2.0]) print(a[: np.newaxis] + b) 
    Output:
    [[ 0. 1. 2.] [ 10. 11. 12.] [ 20. 21. 22.] [ 30. 31. 32.]] 
    NumPy i Python | Sett 2 (avansert)' hight='350' title=I noen tilfeller strekker kringkasting begge matrisene for å danne en utgangsmatrise som er større enn en av de innledende matrisene. Arbeid med dato og klokkeslett: Numpy has core array data types which natively support datetime functionality. The data type is called datetime64 so named because datetime is already taken by the datetime library included in Python. Consider the example below for some examples: Python
    import numpy as np # creating a date today = np.datetime64('2017-02-12') print('Date is:' today) print('Year is:' np.datetime64(today 'Y')) # creating array of dates in a month dates = np.arange('2017-02' '2017-03' dtype='datetime64[D]') print('nDates of February 2017:n' dates) print('Today is February:' today in dates) # arithmetic operation on dates dur = np.datetime64('2017-05-22') - np.datetime64('2016-05-22') print('nNo. of days:' dur) print('No. of weeks:' np.timedelta64(dur 'W')) # sorting dates a = np.array(['2017-02-12' '2016-10-13' '2019-05-22'] dtype='datetime64') print('nDates in sorted order:' np.sort(a)) 
    Output:
    Date is: 2017-02-12 Year is: 2017 Dates of February 2017: ['2017-02-01' '2017-02-02' '2017-02-03' '2017-02-04' '2017-02-05' '2017-02-06' '2017-02-07' '2017-02-08' '2017-02-09' '2017-02-10' '2017-02-11' '2017-02-12' '2017-02-13' '2017-02-14' '2017-02-15' '2017-02-16' '2017-02-17' '2017-02-18' '2017-02-19' '2017-02-20' '2017-02-21' '2017-02-22' '2017-02-23' '2017-02-24' '2017-02-25' '2017-02-26' '2017-02-27' '2017-02-28'] Today is February: True No. of days: 365 days No. of weeks: 52 weeks Dates in sorted order: ['2016-10-13' '2017-02-12' '2019-05-22']
    Lineær algebra i NumPy:Den lineære algebra-modulen til NumPy tilbyr ulike metoder for å bruke lineær algebra på en hvilken som helst numpy-array. Du kan finne:
    • rang determinant spor etc. av en matrise.
    • egne verdier eller matriser
    • matrise og vektorprodukter (punkt indre ytre etc. produkt) matriseeksponentiering
    • løs lineære eller tensorligninger og mye mer!
    Consider the example below which explains how we can use NumPy to do some matrix operations. Python
    import numpy as np A = np.array([[6 1 1] [4 -2 5] [2 8 7]]) print('Rank of A:' np.linalg.matrix_rank(A)) print('nTrace of A:' np.trace(A)) print('nDeterminant of A:' np.linalg.det(A)) print('nInverse of A:n' np.linalg.inv(A)) print('nMatrix A raised to power 3:n' np.linalg.matrix_power(A 3)) 
    Output:
    Rank of A: 3 Trace of A: 11 Determinant of A: -306.0 Inverse of A: [[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]] Matrix A raised to power 3: [[336 162 228] [406 162 469] [698 702 905]]
    Let us assume that we want to solve this linear equation set:
    x + 2*y = 8 3*x + 4*y = 18 
    This problem can be solved using linalg.løse method as shown in example below: Python
    import numpy as np # coefficients a = np.array([[1 2] [3 4]]) # constants b = np.array([8 18]) print('Solution of linear equations:' np.linalg.solve(a b)) 
    Output:
    Solution of linear equations: [ 2. 3.]
    Finally we see an example which shows how one can perform linear regression using least squares method. A linear regression line is of the form w1 x + w 2 = y og det er linjen som minimerer summen av kvadratene av avstanden fra hvert datapunkt til linjen. Så gitt n datapar (xi yi) er parameterne vi ser etter w1 og w2 som minimerer feilen: NumPy i Python | Sett 2 (avansert)' title= Let us have a look at the example below: Python
    import numpy as np import matplotlib.pyplot as plt # x co-ordinates x = np.arange(0 9) A = np.array([x np.ones(9)]) # linearly generated sequence y = [19 20 20.5 21.5 22 23 23 25.5 24] # obtaining the parameters of regression line w = np.linalg.lstsq(A.T y)[0] # plotting the line line = w[0]*x + w[1] # regression line plt.plot(x line 'r-') plt.plot(x y 'o') plt.show() 
    Output: ' title=
Så dette fører til konklusjonen av denne serien med NumPy-opplæringen. NumPy er et mye brukt bibliotek for generell bruk som er kjernen i mange andre beregningsbiblioteker som scipy scikit-learn tensorflow matplotlib opencv etc. Å ha en grunnleggende forståelse av NumPy hjelper deg med å håndtere andre bibliotek på høyere nivå effektivt! Referanser: Lag quiz