logo

Skriv ut første n tall med nøyaktig to sett biter

Gitt et tall n skriv først ut n positive heltall med nøyaktig to sett biter i sin binære representasjon.
Eksempler:

Input: n = 3  
Output: 3 5 6
The first 3 numbers with two set bits are 3 (0011)
5 (0101) and 6 (0110)
Input: n = 5
Output: 3 5 6 9 10 12

EN Enkel løsning er å vurdere alle positive heltall ett etter ett fra 1. For hvert tall sjekk om det har nøyaktig to sett biter. Hvis et tall har nøyaktig to sett biter, skriv det ut og øke antallet av slike tall.
An Effektiv løsning er å generere slike tall direkte. Hvis vi tydelig observerer tallene, kan vi omskrive dem som gitt nedenfor pow(21)+pow(20) pow(22)+pow(20) pow(22)+pow(21) pow(23)+pow(20) pow(23)+pow(21) pow(23)+pow(22) ..........
Alle tall kan genereres i økende rekkefølge i henhold til det høyeste av to sett biter. Ideen er å fikse høyere av to bits én etter én. For gjeldende høyere sett bit vurdere alle lavere biter og skriv ut de dannede tallene.



C++
// C++ program to print first n numbers // with exactly two set bits #include    using namespace std; // Prints first n numbers with two set bits void printTwoSetBitNums(int n) {  // Initialize higher of two sets bits  int x = 1;  // Keep reducing n for every number  // with two set bits.  while (n > 0)  {  // Consider all lower set bits for  // current higher set bit  int y = 0;  while (y < x)  {  // Print current number  cout << (1 << x) + (1 << y) << ' ';  // If we have found n numbers  n--;  if (n == 0)  return;  // Consider next lower bit for current  // higher bit.  y++;  }  // Increment higher set bit  x++;  } } // Driver code int main() {  printTwoSetBitNums(4);  return 0; } 
Java
// Java program to print first n numbers // with exactly two set bits import java.io.*; class GFG  {  // Function to print first n numbers with two set bits  static void printTwoSetBitNums(int n)  {  // Initialize higher of two sets bits  int x = 1;    // Keep reducing n for every number  // with two set bits  while (n > 0)  {  // Consider all lower set bits for  // current higher set bit  int y = 0;  while (y < x)  {  // Print current number  System.out.print(((1 << x) + (1 << y)) +' ');    // If we have found n numbers  n--;  if (n == 0)  return;    // Consider next lower bit for current  // higher bit.  y++;  }    // Increment higher set bit  x++;  }  }    // Driver program  public static void main (String[] args)   {  int n = 4;  printTwoSetBitNums(n);  } } // This code is contributed by Pramod Kumar 
Python3
# Python3 program to print first n  # numbers with exactly two set bits  # Prints first n numbers  # with two set bits  def printTwoSetBitNums(n) : # Initialize higher of # two sets bits  x = 1 # Keep reducing n for every  # number with two set bits.  while (n > 0) : # Consider all lower set bits  # for current higher set bit  y = 0 while (y < x) : # Print current number  print((1 << x) + (1 << y) end = ' ' ) # If we have found n numbers  n -= 1 if (n == 0) : return # Consider next lower bit  # for current higher bit.  y += 1 # Increment higher set bit  x += 1 # Driver code  printTwoSetBitNums(4) # This code is contributed  # by Smitha 
C#
// C# program to print first n numbers // with exactly two set bits using System; class GFG   {    // Function to print first n  // numbers with two set bits  static void printTwoSetBitNums(int n)  {    // Initialize higher of   // two sets bits  int x = 1;    // Keep reducing n for every  // number with two set bits  while (n > 0)  {    // Consider all lower set bits   // for current higher set bit  int y = 0;  while (y < x)  {    // Print current number  Console.Write(((1 << x) +  (1 << y)) +' ');    // If we have found n numbers  n--;  if (n == 0)  return;    // Consider next lower bit   // for current higher bit.  y++;  }    // Increment higher set bit  x++;  }  }    // Driver program  public static void Main()   {  int n = 4;  printTwoSetBitNums(n);  } }   // This code is contributed by Anant Agarwal. 
JavaScript
<script> // Javascript program to print first n numbers // with exactly two set bits // Prints first n numbers with two set bits function printTwoSetBitNums(n) {  // Initialize higher of two sets bits  let x = 1;  // Keep reducing n for every number  // with two set bits.  while (n > 0)  {    // Consider all lower set bits for  // current higher set bit  let y = 0;  while (y < x)  {    // Print current number  document.write((1 << x) + (1 << y) + ' ');  // If we have found n numbers  n--;  if (n == 0)  return;  // Consider next lower bit for current  // higher bit.  y++;  }  // Increment higher set bit  x++;  } } // Driver code printTwoSetBitNums(4); // This code is contributed by Mayank Tyagi </script> 
PHP
 // PHP program to print  // first n numbers with  // exactly two set bits // Prints first n numbers  // with two set bits function printTwoSetBitNums($n) { // Initialize higher of // two sets bits $x = 1; // Keep reducing n for  // every number with  // two set bits. while ($n > 0) { // Consider all lower set  // bits for current higher  // set bit $y = 0; while ($y < $x) { // Print current number echo (1 << $x) + (1 << $y) ' '; // If we have found n numbers $n--; if ($n == 0) return; // Consider next lower  // bit for current  // higher bit. $y++; } // Increment higher set bit $x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Ajit ?> 

Utgang:  
 

pawandeep rajan
3 5 6 9  


Tidskompleksitet: På)

java dato gjeldende

Hjelpeplass: O(1)



Tilnærming #2: Bruk while og bli med


Tilnærmingen er å starte fra heltall 3 og sjekke om antall settbiter i dens binære representasjon er lik 2 eller ikke. Hvis den har nøyaktig 2 sett biter, legg den til listen over tall med 2 sett biter til listen har n elementer.

Algoritme

1. Initialiser en tom liste res for å lagre heltallene med nøyaktig to sett biter.
2. Initialiser en heltallsvariabel i til 3.
3. Mens lengden på listen res er mindre enn n, gjør følgende:
en. Sjekk om antall settbiter i den binære representasjonen av i er lik 2 eller ikke ved å bruke count()-metoden til strengen.
b. Hvis antall settbiter er lik 2, legg i til listen res.
c. Øk i med 1.
4. Returner listen res.

C++
#include    #include  using namespace std; int countSetBits(int num) {  int count = 0;  while (num > 0) {  count += num & 1;  num >>= 1;  }  return count; } vector<int> numbersWithTwoSetBits(int n) {  vector<int> res;  int i = 3;  while (res.size() < n) {  if (countSetBits(i) == 2) {  res.push_back(i);  }  i++;  }  return res; } int main() {  int n = 3;  vector<int> result = numbersWithTwoSetBits(n);  cout << 'Result: ';  for (int i = 0; i < result.size(); i++) {  cout << result[i] << ' ';  }  cout << endl;  return 0; } 
Java
// Java program for the above approach import java.util.ArrayList; import java.util.List; public class GFG {  // Function to count the number of set bits (binary 1s)  // in an integer  static int countSetBits(int num)  {  int count = 0;  while (num > 0) {  count += num & 1; // Increment count if the last  // bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count;  }  // Function to generate 'n' numbers with exactly two set  // bits in their binary representation  static List<Integer> numbersWithTwoSetBits(int n)  {  List<Integer> res = new ArrayList<>();  int i = 3; // Start from 3 as the first number with  // two set bits  while (res.size() < n) {  if (countSetBits(i)  == 2) { // Check if the number has exactly  // two set bits  res.add(  i); // Add the number to the result list  }  i++; // Move to the next number  }  return res;  }  public static void main(String[] args)  {  int n = 3; // Number of numbers with two set bits to  // generate  List<Integer> result = numbersWithTwoSetBits(  n); // Get the generated numbers  for (int num : result) {  System.out.print(  num + ' '); // Display the generated numbers  }  System.out.println();  } } // This code is contributed by Susobhan Akhuli 
Python3
def numbersWithTwoSetBits(n): res = [] i = 3 while len(res) < n: if bin(i).count('1') == 2: res.append(i) i += 1 return res n = 3 result = numbersWithTwoSetBits(n) output_string = ' '.join(str(x) for x in result) print(output_string) 
C#
using System; using System.Collections.Generic; class Program {  // Function to count the number of set bits (binary 1s) in an integer  static int CountSetBits(int num)  {  int count = 0;  while (num > 0)  {  count += num & 1; // Increment count if the last bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count;  }  // Function to generate 'n' numbers with exactly two set bits in their binary representation  static List<int> NumbersWithTwoSetBits(int n)  {  List<int> res = new List<int>();  int i = 3; // Start from 3 as the first number with two set bits  while (res.Count < n)  {  if (CountSetBits(i) == 2) // Check if the number has exactly two set bits  {  res.Add(i); // Add the number to the result list  }  i++; // Move to the next number  }  return res;  }  static void Main(string[] args)  {  int n = 3; // Number of numbers with two set bits to generate  List<int> result = NumbersWithTwoSetBits(n); // Get the generated numbers  Console.Write('Result: ');  foreach (int num in result)  {  Console.Write(num + ' '); // Display the generated numbers  }  Console.WriteLine();  } } 
JavaScript
// Javascript program for the above approach // Function to count the number of set bits (binary 1s) // in an integer function countSetBits(num) {  let count = 0;  while (num > 0) {  count += num & 1; // Increment count if the last  // bit is set (1)  num >>= 1; // Right shift to check the next bit  }  return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation function numbersWithTwoSetBits(n) {  let res = [];  let i = 3; // Start from 3 as the first number with  // two set bits  while (res.length < n) {  if (countSetBits(i) === 2) { // Check if the number has exactly  // two set bits  res.push(i); // Add the number to the result list  }  i++; // Move to the next number  }  return res; } // Number of numbers with two set bits to generate let n = 3; // Get the generated numbers let result = numbersWithTwoSetBits(n); // Display the generated numbers console.log(result.join(' ')); // This code is contributed by Susobhan Akhuli 

Produksjon
3 5 6

Tidskompleksitet: O(n log n) hvor n er antall heltall med nøyaktig to sett biter. Dette er fordi vi sjekker antall settbiter i den binære representasjonen av hvert heltall som tar O(log n) tid.



primtallsprogram i java

Romkompleksitet: O(n) hvor n er antall heltall med nøyaktig to sett biter. Dette er fordi vi lagrer listen over heltall med to sett biter i minnet.