Gitt en sortert matrise sammen med[][] av størrelse n × m og et heltall x finne ut om x er tilstede i matrisen.
Matrisen er sortert på følgende måte:
- Hver rad er sortert i økende rekkefølge.
- Det første elementet i hver rad er større enn eller lik det siste elementet i forrige rad
(dvs. mat[i][0] ≥ mat[i−1][m−1] for alle 1 ≤ i< n).
Eksempler:
Inndata: x = 14 matte[][] = [[ 1 5 9]
[14 20 21]
[30 34 43]]
Produksjon: ekte
Forklaring: Verdien14er tilstede i den andre radens første kolonne i matrisen.Inndata: x = 42 matte[][] = [[ 1 5 9 11]
[14 20 21 26]
[30 34 43 50]]
Produksjon: falsk
Forklaring: Verdien42vises ikke i matrisen.
Innholdsfortegnelse
- [Naiv tilnærming] Sammenligning med alle elementer – O(n × m) Tid og O(1) Mellomrom
- [Bedre tilnærming] Bruke binært søk to ganger - O(log n + log m) Tid og O(1) Mellomrom
- [Forventet tilnærming] Bruke binært søk én gang - O(log(n × m)) og O(1) mellomrom
[Naiv tilnærming] Sammenligning med alle elementer – O(n × m) Tid og O(1) Mellomrom
C++Ideen er å iterere gjennom hele matrisematten[][] og sammenligne hvert element med x. Hvis et element samsvarer med x-en, returnerer vi sann. Ellers vil vi returnere falskt på slutten av traverseringen.
#include #include using namespace std; bool searchMatrix(vector<vector<int>>& mat int x) { int n = mat.size(); int m = mat[0].size(); // traverse every element in the matrix for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (mat[i][j] == x) return true; } } return false; } int main() { vector<vector<int>> mat = { {1 5 9} {14 20 21} {30 34 43} }; int x = 14; cout << (searchMatrix(mat x) ? 'true' : 'false') << endl; }
Java class GfG { public static boolean searchMatrix(int[][] mat int x) { int n = mat.length; int m = mat[0].length; // traverse every element in the matrix for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (mat[i][j] == x) return true; } } return false; } public static void main(String[] args) { int[][] mat = { {1 5 9} {14 20 21} {30 34 43} }; int x = 14; System.out.println(searchMatrix(mat x) ? 'true' : 'false'); } }
Python def searchMatrix(mat x): n = len(mat) m = len(mat[0]) # traverse every element in the matrix for i in range(n): for j in range(m): if mat[i][j] == x: return True return False if __name__ == '__main__': mat = [ [1 5 9] [14 20 21] [30 34 43] ] x = 14 print('true' if searchMatrix(mat x) else 'false')
C# using System; class GfG { public static bool searchMatrix(int[][] mat int x) { int n = mat.Length; int m = mat[0].Length; // traverse every element in the matrix for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (mat[i][j] == x) return true; } } return false; } public static void Main(string[] args) { int[][] mat = new int[][] { new int[] {1 5 9} new int[] {14 20 21} new int[] {30 34 43} }; int x = 14; Console.WriteLine(searchMatrix(mat x) ? 'true' : 'false'); } }
JavaScript function searchMatrix(mat x) { let n = mat.length; let m = mat[0].length; // traverse every element in the matrix for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if (mat[i][j] === x) return true; } } return false; } // Driver Code let mat = [ [1 5 9] [14 20 21] [30 34 43] ]; let x = 14; console.log(searchMatrix(mat x) ? 'true' : 'false');
Produksjon
true
[Bedre tilnærming] Bruke binært søk to ganger - O(log n + log m) Tid og O(1) Mellomrom
Først finner vi raden der målet x kan være ved å bruke binært søk, og deretter bruker vi binært søk igjen innenfor den raden. For å finne riktig rad utfører vi binært søk på de første elementene i den midterste raden.
Trinn for trinn implementeringer:
=> Start med lav = 0 og høy = n - 1.
=> Hvis x er mindre enn det første elementet i den midterste raden (a[midt][0]), vil x være mindre enn alle elementene i radene >= midt, så oppdater høy = midt - 1.
=> Hvis x er større enn det første elementet i den midterste raden (a[midt][0]), vil x være større enn alle elementene i radene< mid so store the current mid row and update low = mid + 1.
Når vi har funnet den riktige raden, kan vi bruke binært søk i den raden for å søke etter målelementet x.
C++#include #include using namespace std; // function to binary search for x in arr[] bool search(vector<int> &arr int x) { int lo = 0 hi = arr.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (x == arr[mid]) return true; if (x < arr[mid]) hi = mid - 1; else lo = mid + 1; } return false; } // function to search element x in fully // sorted matrix bool searchMatrix(vector<vector<int>> &mat int x) { int n = mat.size() m = mat[0].size(); int lo = 0 hi = n - 1; int row = -1; while (lo <= hi) { int mid = (lo + hi) / 2; // if the first element of mid row is equal to x // return true if (x == mat[mid][0]) return true; // if x is greater than first element of mid row // store the mid row and search in lower half if (x > mat[mid][0]) { row = mid; lo = mid + 1; } // if x is smaller than first element of mid row // search in upper half else hi = mid - 1; } // if x is smaller than all elements of mat[][] if (row == -1) return false; return search(mat[row] x); } int main() { vector<vector<int>> mat = {{1 5 9} {14 20 21} {30 34 43}}; int x = 14; if (searchMatrix(mat x)) cout << 'true'; else cout << 'false'; return 0; }
Java class GfG { // function to binary search for x in arr[] static boolean search(int[] arr int x) { int lo = 0 hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (x == arr[mid]) return true; if (x < arr[mid]) hi = mid - 1; else lo = mid + 1; } return false; } // function to search element x in fully // sorted matrix static boolean searchMatrix(int[][] mat int x) { int n = mat.length m = mat[0].length; int lo = 0 hi = n - 1; int row = -1; while (lo <= hi) { int mid = (lo + hi) / 2; // if the first element of mid row is equal to x // return true if (x == mat[mid][0]) return true; // if x is greater than first element of mid row // store the mid row and search in lower half if (x > mat[mid][0]) { row = mid; lo = mid + 1; } // if x is smaller than first element of mid row // search in upper half else hi = mid - 1; } // if x is smaller than all elements of mat[][] if (row == -1) return false; return search(mat[row] x); } public static void main(String[] args) { int[][] mat = { {1 5 9} {14 20 21} {30 34 43} }; int x = 14; if (searchMatrix(mat x)) System.out.println('true'); else System.out.println('false'); } }
Python # function to binary search for x in arr[] def search(arr x): lo = 0 hi = len(arr) - 1 while lo <= hi: mid = (lo + hi) // 2 if x == arr[mid]: return True if x < arr[mid]: hi = mid - 1 else: lo = mid + 1 return False # function to search element x in fully # sorted matrix def searchMatrix(mat x): n = len(mat) m = len(mat[0]) lo = 0 hi = n - 1 row = -1 while lo <= hi: mid = (lo + hi) // 2 # if the first element of mid row is equal to x # return true if x == mat[mid][0]: return True # if x is greater than first element of mid row # store the mid row and search in lower half if x > mat[mid][0]: row = mid lo = mid + 1 # if x is smaller than first element of mid row # search in upper half else: hi = mid - 1 # if x is smaller than all elements of mat[][] if row == -1: return False return search(mat[row] x) if __name__ == '__main__': mat = [[1 5 9] [14 20 21] [30 34 43]] x = 14 if searchMatrix(mat x): print('true') else: print('false')
C# using System; class GfG { // function to binary search for x in arr[] static bool Search(int[] arr int x) { int lo = 0 hi = arr.Length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (x == arr[mid]) return true; if (x < arr[mid]) hi = mid - 1; else lo = mid + 1; } return false; } // function to search element x in fully // sorted matrix static bool SearchMatrix(int[][] mat int x) { int n = mat.Length m = mat[0].Length; int lo = 0 hi = n - 1; int row = -1; while (lo <= hi) { int mid = (lo + hi) / 2; // if the first element of mid row is equal to x // return true if (x == mat[mid][0]) return true; // if x is greater than first element of mid row // store the mid row and search in lower half if (x > mat[mid][0]) { row = mid; lo = mid + 1; } // if x is smaller than first element of mid row // search in upper half else hi = mid - 1; } // if x is smaller than all elements of mat[][] if (row == -1) return false; return Search(mat[row] x); } static void Main(string[] args) { int[][] mat = new int[][] { new int[] {1 5 9} new int[] {14 20 21} new int[] {30 34 43} }; int x = 14; if (SearchMatrix(mat x)) Console.WriteLine('true'); else Console.WriteLine('false'); } }
JavaScript // function to binary search for x in arr[] function search(arr x) { let lo = 0 hi = arr.length - 1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); if (x === arr[mid]) return true; if (x < arr[mid]) hi = mid - 1; else lo = mid + 1; } return false; } // function to search element x in fully // sorted matrix function searchMatrix(mat x) { let n = mat.length m = mat[0].length; let lo = 0 hi = n - 1; let row = -1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); // if the first element of mid row is equal to x // return true if (x === mat[mid][0]) return true; // if x is greater than first element of mid row // store the mid row and search in lower half if (x > mat[mid][0]) { row = mid; lo = mid + 1; } // if x is smaller than first element of mid row // search in upper half else hi = mid - 1; } // if x is smaller than all elements of mat[][] if (row === -1) return false; return search(mat[row] x); } // Driver code const mat = [ [1 5 9] [14 20 21] [30 34 43] ]; const x = 14; if (searchMatrix(mat x)) console.log('true'); else console.log('false');
Produksjon
true
[Forventet tilnærming] Bruke binært søk én gang - O(log(n × m)) og O(1) mellomrom
Ideen er å betrakte den gitte matrisen som 1D-matrise og bruke bare ett binært søk.
For eksempel for en matrise med størrelse n x m, og vi kan betrakte den som en 1D-matrise med størrelse n*m, så vil den første indeksen være 0 og den siste indeksen n*m-1. Så vi må gjøre binært søk fra lav = 0 til høy = (n*m-1).
Hvordan finne elementet i 2D-matrise som tilsvarer indeks = mid?
C++Siden hver rad med matte[][] vil ha m elementer slik at vi kan finne rad av elementet som (midt / m) og den søyle av elementet som (midt % m) . Deretter kan vi sammenligne x med arr[midt/m][mid%m] for hver midt og fullføre vårt binære søk.
#include #include using namespace std; bool searchMatrix(vector<vector<int>>& mat int x) { int n = mat.size() m = mat[0].size(); int lo = 0 hi = n * m - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // find row and column of element at mid index int row = mid / m; int col = mid % m; // if x is found return true if (mat[row][col] == x) return true; // if x is greater than mat[row][col] search // in right half if (mat[row][col] < x) lo = mid + 1; // if x is less than mat[row][col] search // in left half else hi = mid - 1; } return false; } int main() { vector<vector<int>> mat = {{1 5 9} {14 20 21} {30 34 43}}; int x = 14; if (searchMatrix(mat x)) cout << 'true'; else cout << 'false'; return 0; }
Java class GfG { static boolean searchMatrix(int[][] mat int x) { int n = mat.length m = mat[0].length; int lo = 0 hi = n * m - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // find row and column of element at mid index int row = mid / m; int col = mid % m; // if x is found return true if (mat[row][col] == x) return true; // if x is greater than mat[row][col] search // in right half if (mat[row][col] < x) lo = mid + 1; // if x is less than mat[row][col] search // in left half else hi = mid - 1; } return false; } public static void main(String[] args) { int[][] mat = {{1 5 9} {14 20 21} {30 34 43}}; int x = 14; if (searchMatrix(mat x)) System.out.println('true'); else System.out.println('false'); } }
Python def searchMatrix(mat x): n = len(mat) m = len(mat[0]) lo hi = 0 n * m - 1 while lo <= hi: mid = (lo + hi) // 2 # find row and column of element at mid index row = mid // m col = mid % m # if x is found return true if mat[row][col] == x: return True # if x is greater than mat[row][col] search # in right half if mat[row][col] < x: lo = mid + 1 # if x is less than mat[row][col] search # in left half else: hi = mid - 1 return False if __name__ == '__main__': mat = [[1 5 9] [14 20 21] [30 34 43]] x = 14 if searchMatrix(mat x): print('true') else: print('false')
C# using System; class GfG { // function to search for x in the matrix // using binary search static bool searchMatrix(int[] mat int x) { int n = mat.GetLength(0) m = mat.GetLength(1); int lo = 0 hi = n * m - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // find row and column of element at mid index int row = mid / m; int col = mid % m; // if x is found return true if (mat[row col] == x) return true; // if x is greater than mat[row col] search // in right half if (mat[row col] < x) lo = mid + 1; // if x is less than mat[row col] search // in left half else hi = mid - 1; } return false; } static void Main() { int[] mat = { { 1 5 9 } { 14 20 21 } { 30 34 43 } }; int x = 14; if (searchMatrix(mat x)) Console.WriteLine('true'); else Console.WriteLine('false'); } }
JavaScript function searchMatrix(mat x) { let n = mat.length m = mat[0].length; let lo = 0 hi = n * m - 1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); // find row and column of element at mid index let row = Math.floor(mid / m); let col = mid % m; // if x is found return true if (mat[row][col] === x) return true; // if x is greater than mat[row][col] search // in right half if (mat[row][col] < x) lo = mid + 1; // if x is less than mat[row][col] search // in left half else hi = mid - 1; } return false; } // Driver Code let mat = [[1 5 9] [14 20 21] [30 34 43]]; let x = 14; if (searchMatrix(mat x)) console.log('true'); else console.log('false');
Produksjon
trueLag quiz