logo

Luhn algoritme

Luhn-algoritmen, også kjent som modul 10 eller mot 10 algoritme, er en enkel sjekksumformel som brukes til å validere en rekke identifikasjonsnumre, for eksempel kredittkortnumre, IMEI-numre, kanadiske personnummer. LUHN-formelen ble laget på slutten av 1960-tallet av en gruppe matematikere. Kort tid etter tok kredittkortselskapene det i bruk. Fordi algoritmen er i det offentlige domene, kan den brukes av alle. De fleste kredittkort og mange offentlige identifikasjonsnumre bruker algoritmen som en enkel metode for å skille gyldige tall fra feilskrevne eller på annen måte feil tall. Den ble designet for å beskytte mot utilsiktede feil, ikke ondsinnede angrep.

Trinn involvert i Luhn-algoritmen

La oss forstå algoritmen med et eksempel:
Tenk på eksemplet med et kontonummer 79927398713 .



Trinn 1 – Start fra sifferet lengst til høyre, doble verdien av hvert andre siffer,

Steg 2 – Hvis dobling av et tall resulterer i et tosifret tall, dvs. større enn 9 (f.eks. 6 × 2 = 12), legger du til sifrene til produktet (f.eks. 12: 1 + 2 = 3, 15: 1 + 5 = 6), for å få et enkeltsifret nummer.



Trinn 3 – Ta nå summen av alle sifrene.

hva er dvalemodus



Trinn 4 – Hvis den totale modulo 10 er lik 0 (hvis totalen ender på null), er tallet gyldig i henhold til Luhn-formelen; ellers er det ikke gyldig.

Siden summen er 70 som er et multiplum av 10, er kontonummeret muligens gyldig.

Ideen er enkel; vi krysser fra slutten. For hvert andre siffer dobler vi det før vi legger det til. Vi legger til to sifre av tallet oppnådd etter dobling.

Gjennomføring:

C++




// C++ program to implement Luhn algorithm> #include> using> namespace> std;> // Returns true if given card number is valid> bool> checkLuhn(>const> string& cardNo)> {> >int> nDigits = cardNo.length();> >int> nSum = 0, isSecond =>false>;> >for> (>int> i = nDigits - 1; i>= 0; i--) {> >int> d = cardNo[i] ->'0'>;> >if> (isSecond ==>true>)> >d = d * 2;> >// We add two digits to handle> >// cases that make two digits after> >// doubling> >nSum += d / 10;> >nSum += d % 10;> >isSecond = !isSecond;> >}> >return> (nSum % 10 == 0);> }> // Driver code> int> main()> {> >string cardNo =>'79927398713'>;> >if> (checkLuhn(cardNo))> >printf>(>'This is a valid card'>);> >else> >printf>(>'This is not a valid card'>);> >return> 0;> }>

>

>

Java




// Java program to implement> // Luhn algorithm> import> java.io.*;> class> GFG {> > // Returns true if given> // card number is valid> static> boolean> checkLuhn(String cardNo)> {> >int> nDigits = cardNo.length();> >int> nSum =>0>;> >boolean> isSecond =>false>;> >for> (>int> i = nDigits ->1>; i>=>0>; i--)> >{> >int> d = cardNo.charAt(i) ->'0'>;> >if> (isSecond ==>true>)> >d = d *>2>;> >// We add two digits to handle> >// cases that make two digits> >// after doubling> >nSum += d />10>;> >nSum += d %>10>;> >isSecond = !isSecond;> >}> >return> (nSum %>10> ==>0>);> }> >// Driver code> >static> public> void> main (String[] args)> >{> >String cardNo =>'79927398713'>;> >if> (checkLuhn(cardNo))> >System.out.println(>'This is a valid card'>);> >else> >System.out.println(>'This is not a valid card'>);> > >}> }> // This Code is contributed by vt_m.>

applet applet

>

>

Python3




# Python3 program to implement> # Luhn algorithm> # Returns true if given card> # number is valid> def> checkLuhn(cardNo):> > >nDigits>=> len>(cardNo)> >nSum>=> 0> >isSecond>=> False> > >for> i>in> range>(nDigits>-> 1>,>->1>,>->1>):> >d>=> ord>(cardNo[i])>-> ord>(>'0'>)> > >if> (isSecond>=>=> True>):> >d>=> d>*> 2> > ># We add two digits to handle> ># cases that make two digits after> ># doubling> >nSum>+>=> d>/>/> 10> >nSum>+>=> d>%> 10> > >isSecond>=> not> isSecond> > >if> (nSum>%> 10> =>=> 0>):> >return> True> >else>:> >return> False> # Driver code> if> __name__>=>=>'__main__'>:> > >cardNo>=> '79927398713'> > >if> (checkLuhn(cardNo)):> >print>(>'This is a valid card'>)> >else>:> >print>(>'This is not a valid card'>)> # This code is contributed by rutvik_56>

>

>

C#


java-strengformatering



// C# program to implement> // Luhn algorithm> using> System;> class> GFG {> > // Returns true if given> // card number is valid> static> bool> checkLuhn(String cardNo)> {> >int> nDigits = cardNo.Length;> >int> nSum = 0;> >bool> isSecond =>false>;> >for> (>int> i = nDigits - 1; i>= 0; i--)> >{> >int> d = cardNo[i] ->'0'>;> >if> (isSecond ==>true>)> >d = d * 2;> >// We add two digits to handle> >// cases that make two digits> >// after doubling> >nSum += d / 10;> >nSum += d % 10;> >isSecond = !isSecond;> >}> >return> (nSum % 10 == 0);> }> >// Driver code> >static> public> void> Main()> >{> >String cardNo =>'79927398713'>;> >if> (checkLuhn(cardNo))> >Console.WriteLine(>'This is a valid card'>);> >else> >Console.WriteLine(>'This is not a valid card'>);> > >}> }> // This Code is contributed by vt_m.>

>

>

Javascript




> >// Javascript program to implement Luhn algorithm> > >// Returns true if given> >// card number is valid> >function> checkLuhn(cardNo)> >{> >let nDigits = cardNo.length;> >let nSum = 0;> >let isSecond =>false>;> >for> (let i = nDigits - 1; i>= 0; i--)> >{> >let d = cardNo[i].charCodeAt() ->'0'>.charCodeAt();> >if> (isSecond ==>true>)> >d = d * 2;> >// We add two digits to handle> >// cases that make two digits> >// after doubling> >nSum += parseInt(d / 10, 10);> >nSum += d % 10;> >isSecond = !isSecond;> >}> >return> (nSum % 10 == 0);> >}> > >let cardNo =>'79927398713'>;> >if> (checkLuhn(cardNo))> >document.write(>'This is a valid card'>);> >else> >document.write(>'This is not a valid card'>);> > >

delvis avledet lateks
>

>

Produksjon

This is a valid card>

Luhn-algoritmen oppdager enhver enkeltsifret feil, så vel som nesten alle transposisjoner av tilstøtende sifre.