Du får et tall n ( 3<= n < 10^6 ) and you have to find nearest prime less than n?
Eksempler:
kat timpf høyde
Input : n = 10 Output: 7 Input : n = 17 Output: 13 Input : n = 30 Output: 29
EN enkel løsning for dette problemet er å iterere fra n-1 til 2 og for hvert tall sjekk om det er en prime . Hvis prime deretter returnere den og bryte løkken. Denne løsningen ser bra ut hvis det bare er ett søk. Men ikke effektivt hvis det er flere spørringer for forskjellige verdier av n.
Nedenfor er implementeringen av tilnærmingen ovenfor:
mylive cricketC++
// C++ program for the above approach #include using namespace std; // Function to return nearest prime number int prime(int n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= sqrt(i); j += 2) { if (i % j == 0) break; } if (j > sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code int main() { int n = 17; cout << prime(n); return 0; }
C // C program for the above approach #include #include // Function to return nearest prime number int prime(int n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= sqrt(i); j += 2) { if (i % j == 0) break; } if (j > sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code int main() { int n = 17; printf('%d' prime(n)); return 0; } // This code is contributed by Sania Kumari Gupta
Java // Java program for the above approach import java.io.*; class GFG { // Function to return nearest prime number static int prime(int n) { // All prime numbers are odd except two if (n % 2 != 0) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= Math.sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code public static void main(String[] args) { int n = 17; System.out.print(prime(n)); } } // This code is contributed by subham348.
Python3 # Python program for the above approach # Function to return nearest prime number from math import floor sqrt def prime(n): # All prime numbers are odd except two if (n & 1): n -= 2 else: n -= 1 ij = 03 for i in range(n 2 -2): if(i % 2 == 0): continue while(j <= floor(sqrt(i)) + 1): if (i % j == 0): break j += 2 if (j > floor(sqrt(i))): return i # It will only be executed when n is 3 return 2 # Driver Code n = 17 print(prime(n)) # This code is contributed by shinjanpatra
C# // C# program for the above approach using System; class GFG { // Function to return nearest prime number static int prime(int n) { // All prime numbers are odd except two if (n % 2 != 0) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= Math.Sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.Sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code public static void Main() { int n = 17; Console.Write(prime(n)); } } // This code is contributed by subham348.
JavaScript <script> // Javascript program for the above approach // Function to return nearest prime number function prime(n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; let i j; for(i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for(j = 3; j <= Math.sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code let n = 17; document.write(prime(n)); // This code is contributed by souravmahato348 </script>
Produksjon
13
Tidskompleksitet: O(n log n + log n) = O(n log n)
Plass kompleksitet: O(1)
An effektiv løsning for dette problemet er å generere alle primtall mindre enn 10^6 ved hjelp av Sil av Sundaram og lagre deretter i en matrise i økende rekkefølge. Nå gjelder endret binært søk å søke nærmeste primtall mindre enn n.
// C++ program to find the nearest prime to n. #include #define MAX 1000000 using namespace std; // array to store all primes less than 10^6 vector<int> primes; // Utility function of Sieve of Sundaram void Sieve() { int n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x int nNew = sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int marked[n/2+500] = {0}; // eliminate indexes which does not produce primes for (int i=1; i<=(nNew-1)/2; i++) for (int j=(i*(i+1))<<1; j<=n/2; j=j+2*i+1) marked[j] = 1; // Since 2 is a prime number primes.push_back(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (int i=1; i<=n/2; i++) if (marked[i] == 0) primes.push_back(2*i + 1); } // modified binary search to find nearest prime less than N int binarySearch(int leftint rightint n) { if (left<=right) { int mid = (left + right)/2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.size()-1) return primes[mid]; // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes[mid] == n) return primes[mid-1]; // now if primes[mid]n that // mean we reached at nearest prime if (primes[mid] < n && primes[mid+1] > n) return primes[mid]; if (n < primes[mid]) return binarySearch(left mid-1 n); else return binarySearch(mid+1 right n); } return 0; } // Driver program to run the case int main() { Sieve(); int n = 17; cout << binarySearch(0 primes.size()-1 n); return 0; }
Java // Java program to find the nearest prime to n. import java.util.*; class GFG { static int MAX=1000000; // array to store all primes less than 10^6 static ArrayList<Integer> primes = new ArrayList<Integer>(); // Utility function of Sieve of Sundaram static void Sieve() { int n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x int nNew = (int)Math.sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int[] marked = new int[n / 2 + 500]; // eliminate indexes which does not produce primes for (int i = 1; i <= (nNew - 1) / 2; i++) for (int j = (i * (i + 1)) << 1; j <= n / 2; j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.add(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (int i = 1; i <= n / 2; i++) if (marked[i] == 0) primes.add(2 * i + 1); } // modified binary search to find nearest prime less than N static int binarySearch(int leftint rightint n) { if (left <= right) { int mid = (left + right) / 2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.size() - 1) return primes.get(mid); // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes.get(mid) == n) return primes.get(mid - 1); // now if primes[mid]n that // mean we reached at nearest prime if (primes.get(mid) < n && primes.get(mid + 1) > n) return primes.get(mid); if (n < primes.get(mid)) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver code public static void main (String[] args) { Sieve(); int n = 17; System.out.println(binarySearch(0 primes.size() - 1 n)); } } // This code is contributed by mits
Python3 # Python3 program to find the nearest # prime to n. import math MAX = 10000; # array to store all primes less # than 10^6 primes = []; # Utility function of Sieve of Sundaram def Sieve(): n = MAX; # In general Sieve of Sundaram produces # primes smaller than (2*x + 2) for a # number given number x nNew = int(math.sqrt(n)); # This array is used to separate numbers # of the form i+j+2ij from others where # 1 <= i <= j marked = [0] * (int(n / 2 + 500)); # eliminate indexes which does not # produce primes for i in range(1 int((nNew - 1) / 2) + 1): for j in range(((i * (i + 1)) << 1) (int(n / 2) + 1) (2 * i + 1)): marked[j] = 1; # Since 2 is a prime number primes.append(2); # Remaining primes are of the form # 2*i + 1 such that marked[i] is false. for i in range(1 int(n / 2) + 1): if (marked[i] == 0): primes.append(2 * i + 1); # modified binary search to find nearest # prime less than N def binarySearch(left right n): if (left <= right): mid = int((left + right) / 2); # base condition is if we are reaching # at left corner or right corner of # primes[] array then return that corner # element because before or after that # we don't have any prime number in # primes array if (mid == 0 or mid == len(primes) - 1): return primes[mid]; # now if n is itself a prime so it will # be present in primes array and here # we have to find nearest prime less than # n so we will return primes[mid-1] if (primes[mid] == n): return primes[mid - 1]; # now if primes[mid]n # that means we reached at nearest prime if (primes[mid] < n and primes[mid + 1] > n): return primes[mid]; if (n < primes[mid]): return binarySearch(left mid - 1 n); else: return binarySearch(mid + 1 right n); return 0; # Driver Code Sieve(); n = 17; print(binarySearch(0 len(primes) - 1 n)); # This code is contributed by chandan_jnu
C# // C# program to find the nearest prime to n. using System; using System.Collections; class GFG { static int MAX = 1000000; // array to store all primes less than 10^6 static ArrayList primes = new ArrayList(); // Utility function of Sieve of Sundaram static void Sieve() { int n = MAX; // In general Sieve of Sundaram produces // primes smaller than (2*x + 2) for a // number given number x int nNew = (int)Math.Sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int[] marked = new int[n / 2 + 500]; // eliminate indexes which does not produce primes for (int i = 1; i <= (nNew - 1) / 2; i++) for (int j = (i * (i + 1)) << 1; j <= n / 2; j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.Add(2); // Remaining primes are of the form 2*i + 1 // such that marked[i] is false. for (int i = 1; i <= n / 2; i++) if (marked[i] == 0) primes.Add(2 * i + 1); } // modified binary search to find // nearest prime less than N static int binarySearch(int left int right int n) { if (left <= right) { int mid = (left + right) / 2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.Count - 1) return (int)primes[mid]; // now if n is itself a prime so it will be // present in primes array and here we have // to find nearest prime less than n so we // will return primes[mid-1] if ((int)primes[mid] == n) return (int)primes[mid - 1]; // now if primes[mid]n // that mean we reached at nearest prime if ((int)primes[mid] < n && (int)primes[mid + 1] > n) return (int)primes[mid]; if (n < (int)primes[mid]) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver code static void Main() { Sieve(); int n = 17; Console.WriteLine(binarySearch(0 primes.Count - 1 n)); } } // This code is contributed by chandan_jnu
PHP // PHP program to find the nearest // prime to n. $MAX = 10000; // array to store all primes less // than 10^6 $primes = array(); // Utility function of Sieve of Sundaram function Sieve() { global $MAX $primes; $n = $MAX; // In general Sieve of Sundaram produces // primes smaller than (2*x + 2) for a // number given number x $nNew = (int)(sqrt($n)); // This array is used to separate numbers // of the form i+j+2ij from others where // 1 <= i <= j $marked = array_fill(0 (int)($n / 2 + 500) 0); // eliminate indexes which does not // produce primes for ($i = 1; $i <= ($nNew - 1) / 2; $i++) for ($j = ($i * ($i + 1)) << 1; $j <= $n / 2; $j = $j + 2 * $i + 1) $marked[$j] = 1; // Since 2 is a prime number array_push($primes 2); // Remaining primes are of the form // 2*i + 1 such that marked[i] is false. for ($i = 1; $i <= $n / 2; $i++) if ($marked[$i] == 0) array_push($primes 2 * $i + 1); } // modified binary search to find nearest // prime less than N function binarySearch($left $right $n) { global $primes; if ($left <= $right) { $mid = (int)(($left + $right) / 2); // base condition is if we are reaching // at left corner or right corner of // primes[] array then return that corner // element because before or after that // we don't have any prime number in // primes array if ($mid == 0 || $mid == count($primes) - 1) return $primes[$mid]; // now if n is itself a prime so it will // be present in primes array and here // we have to find nearest prime less than // n so we will return primes[mid-1] if ($primes[$mid] == $n) return $primes[$mid - 1]; // now if primes[mid]n // that means we reached at nearest prime if ($primes[$mid] < $n && $primes[$mid + 1] > $n) return $primes[$mid]; if ($n < $primes[$mid]) return binarySearch($left $mid - 1 $n); else return binarySearch($mid + 1 $right $n); } return 0; } // Driver Code Sieve(); $n = 17; echo binarySearch(0 count($primes) - 1 $n); // This code is contributed by chandan_jnu ?> JavaScript <script> // JavaScript program to find the nearest prime to n. // array to store all primes less than 10^6 var primes = []; // Utility function of Sieve of Sundaram var MAX = 1000000; function Sieve() { let n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x let nNew = parseInt(Math.sqrt(n)); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j var marked = new Array(n / 2 + 500).fill(0); // eliminate indexes which does not produce primes for (let i = 1; i <= parseInt((nNew - 1) / 2); i++) for (let j = (i * (i + 1)) << 1; j <= parseInt(n / 2); j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.push(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (let i = 1; i <= parseInt(n / 2); i++) if (marked[i] == 0) primes.push(2 * i + 1); } // modified binary search to find nearest prime less than N function binarySearch(left right n) { if (left <= right) { let mid = parseInt((left + right) / 2); // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.length - 1) return primes[mid]; // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes[mid] == n) return primes[mid - 1]; // now if primes[mid]n that // mean we reached at nearest prime if (primes[mid] < n && primes[mid + 1] > n) return primes[mid]; if (n < primes[mid]) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver program to run the case Sieve(); let n = 17; document.write(binarySearch(0 primes.length - 1 n)); // This code is contributed by Potta Lokesh </script>
Produksjon
13
Tidskompleksitet: O(n log n)
Romkompleksitet: O(n)
En annen tilnærming (prøvedelingsmetode):
Begynn å se etter primtall ved å dele det gitte tallet n med alle tallene mindre enn n. Det første primtallet du møter vil være det nærmeste primtallet mindre enn n.
Algoritme:
- Initialiser en variabel kalt 'prime' til 0.
- Start fra n-1 iterer gjennom alle tall mindre enn n i synkende rekkefølge.
- For hvert nummer utfører jeg følgende trinn:
en. Initialiser en variabel kalt 'is_prime' til sann.
b. Start fra 2 iterer gjennom alle tall mindre enn i i økende rekkefølge.
c. For hvert tall j sjekk om j deler i uten å legge igjen en rest. Hvis j deler, setter jeg 'is_prime' til false og bryter ut av loopen.
d. Hvis 'is_prime' fortsatt er sant etter å ha sjekket alle mulige divisorer, sett 'prime' til i og bryt ut av loopen. - Returner 'primtall' som nærmeste primtall mindre enn n.
Nedenfor er implementeringen av tilnærmingen ovenfor:
C++// CPP code to find the nearest prime to N // Using Trial Division method #include #include using namespace std; // Function to find the nearest prime to N // Using Trial Division method bool is_prime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } int nearest_prime(int n) { int prime = 0; for (int i = n-1; i >= 2; i--) { if (is_prime(i)) { prime = i; break; } } return prime; } int main() { int n = 17; int prime = nearest_prime(n); if (prime == 0) { cout << 'There is no prime less than ' << n << endl; } else { cout << prime << endl; } return 0; } // This code is contributed by Susobhan Akhuli
Java // Java code to find the nearest prime to N // Using Trial Division method import java.util.*; public class GFG { // Function to find the nearest prime to N // Using Trial Division method public static boolean isPrime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } public static int nearestPrime(int n) { int prime = 0; for (int i = n - 1; i >= 2; i--) { if (isPrime(i)) { prime = i; break; } } return prime; } public static void main(String[] args) { int n = 17; int prime = nearestPrime(n); if (prime == 0) { System.out.println( 'There is no prime less than ' + n); } else { System.out.println(prime); } } } // This code is contributed by Susobhan Akhuli
Python3 # Python code to find the nearest prime to N # using Trial Division method import math # Function to check if a number is prime or not def is_prime(n): if n <= 1: return False for i in range(2 int(math.sqrt(n)) + 1): if n % i == 0: return False return True # Function to find the nearest prime to N # Using Trial Division method def nearest_prime(n): prime = 0 for i in range(n - 1 1 -1): if is_prime(i): prime = i break return prime # Main function to test the above functions if __name__ == '__main__': n = 17 prime = nearest_prime(n) if prime == 0: print(f'There is no prime less than {n}') else: print(prime) # This code is contributed by sankar.
C# // C# code implementation for the above approach using System; public class GFG { // Function to check if a number is prime static bool IsPrime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= Math.Sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } // Function to find the nearest prime to n static int NearestPrime(int n) { int prime = 0; for (int i = n - 1; i >= 2; i--) { if (IsPrime(i)) { prime = i; break; } } return prime; } static public void Main() { // Code int n = 17; int prime = NearestPrime(n); if (prime == 0) { Console.WriteLine('There is no prime less than ' + n); } else { Console.WriteLine(prime); } } } // This code is contributed by karthik.
JavaScript // Javascript code to find the nearest prime to N // Using Trial Division method // Function to check if a number is prime function isPrime(n) { if (n <= 1) { return false; } for (let i = 2; i <= Math.sqrt(n); i++) { if (n % i === 0) { return false; } } return true; } // Function to find the nearest prime to n function nearestPrime(n) { let prime = 0; for (let i = n - 1; i >= 2; i--) { if (isPrime(i)) { prime = i; break; } } return prime; } let n = 17; let prime = nearestPrime(n); if (prime === 0) { console.log('There is no prime less than ' + n); } else { console.log(prime); } // This code is contributed by karthik.
Produksjon
13
Tidskompleksitet: O(N* sqrt(N))
Hjelpeplass: O(1)
konvertering av int til streng i java
Hvis du har en annen tilnærming til å løse dette problemet, vennligst del i kommentarer.